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Recent literature has pointed out pedagogical otdlssassociated with the use of
computational environments in the learning of math#cs. In this paper, we focus
on the pedagogical role of the computer’s inhetanitations in the development of
learners’ concept images of derivative. In partamiiwe intend to discuss how the
approach to this concept can be designed to pramgaisitive conversion of those
limitations for the enrichment of concept images. Mesent results of a case study
with six undergraduate students in Brazil, deahwith situation of theoretical-
computational conflict.

INTRODUCTION

A wide range of issues related to the use of teldgyoon the teaching of
Mathematics has been discussed in the literatammeSesearch studies report
experiments in which marrowing effectakes placdimitations of the

computational representation lead to the develogroérestricted concept images
by learnerge.g. Hunteet al 1993). The aim of this research is to discuss tinawv
pedagogical role of those limitations candwsitively convertetb enrich students’
concept image of derivative. We have defingdenretical-computational conflico
be any situation in which a computational represtgm for a mathematical concept
Is (at least potentially) contradictory to the asated theoretical formulation
(Giraldo, 2001; Giraldo and Carvalho, 2002). Faaraple, numerical calculation
with machine accuracy cannot be performed in athalcorresponds exactly to the
mathematical theory of limits. Our hypothesis iatthf theoretical-computational
conflicts are emphasized, rather than avoided, thay contribute not to narrow, but
to enrich concept images. In this paper, we wilggnt some results of an
experiment, in which we have observed a samplé&afrsdergraduates students,
from a Brazilian university, dealing with theoreticomputational conflict
situations.

CONCEPT IMAGES AND COGNITIVE UNITS

In the theory developed by Tall and Vinner (1984&concept imagés the total
cognitive structure associated to a mathematiaatept in an individual’s mind. It
includes all the mental pictures, properties, nmeagaociations and processes related
to a given concept, and is continually construetedhe individual matures,

changing with new stimuli and all kinds of expenes. Moreover, the concept



image may (or not) be associated to a statemedttosspecify that concept, named
theconcept definitiorby the authors. A concept definition, in its tunmay (or not)

be coherent with the formal mathematical definitftrat is, the concept definition
usually accepted by the mathematical communitylisTkhe individual’'s concept
image may or not include the formally correct ditiom (see also Vinner 1983,
1991; Tall, 2000).

Tall and Barnard (1997) have named asg@nitive uniteach chunk of the concept
image in which an individual can focus attentiom &ime. Cognitive units may be
symbols, theorems, representations, propertiesyoother aspects related to the
concept. The authors claim that the ability to ¢unlultiple and flexible connections
between and within cognitive units, and thereforesiach important information
whenever necessary, is an important feature tde¢kelopment of powerful
mathematical thinking. Thurston (1990) affirms thatman strategies to understand
mathematics often demand a process of mental casipre in which ideas can be
quickly and completely recalled. In this way, ér@oncept image must include, not
only the formal definition, but a large number iokiages both within cognitive units
and between them.

In this paper we focus, more specifically, on dipalar facet of the relation between
concept image and formal definition: how apparemitkadictions of computational
representation with respect to formal definitioas e used to prompt more flexible
concept images.

THE USE OF COMPUTERS IN MATHEMATICS TEACHING

In this investigation, we intend to focus on theipwe use of technology in
mathematics learning. However, it is importanteémark that research shows that
misused computational environments can have negg@iivat least unhelpful) effects
in mathematics education. The theory quoted aboggests, in particular, that
teaching the concept of derivative must compriffedint approaches and
representations, to enable learners to build upiphelland flexible connections of
cognitive units and, therefore, a rich concept iemdach representation gives
emphasis to certain aspects of the concept, boitoddss out others. Tall (2000)
affirms that the focus on certain aspects and ggdigence of others may result in
the atrophy of neglected ones. The literature glesisome examples in which that
process takes place on computer-based approaches.

An instance is found in Huntet al. (1993). The authors observed that students
using softwarderivein computer-based instruction did not need to sits

values to get a table and sketch the graph. As)oreseen consequence, some
students who could calculate values by substitutigfiore the course seemed to have
lost the skill afterwards. Before and after theeskpent, a sample of seventeen
students was asked:

What can you say aboutif u =v+ 3 andv=17?



None of the students who had failed on the prehtgstoved on the post-test and,
moreover, six who had given satisfactory answertherpre-test failed on the post-
test.

Results of recent research developed in Brazil i@geal difficulties of students and
teachers about the use of new technologies. Abr@ll#88) observed the reactions
of four secondary teachers dealing with graphsintfions produced by computers
and graphic calculators. In the activities appledults given by the devices seemed
to contradict the mathematical theory, due to safenimitations or inadequacy of
visualization windows. In the course of the expemt the teachers hesitated to take
Into consideration the fact that computers caniptimistaken” or “incomplete”
results. In fact, those results were often accebpyggharticipants as correct without
guery, even when clearly clashing with their pkapwledge. The author comments:

All the teachers, even the ones who knew the coenpiniad limitations, seemed, initially,
to believe in the computer results, rather that@r own knowledge. [...] When asked to
interpret some unusual graphs produced by compukersnterviewees had some
difficulties. We observed that the comprehensiographs generated by technology is
not immediate. Teachers did not always managectinile their knowledge with the
visualization on screen. (Abrahao, 1998, p. 23, taurslation)

Similar results are reported by Belfort and Guinear@l998). The authors observed
teachers’ behaviour in the course of activitiesignamic geometry, using the
softwareSketchPadin one of the activities, participants were asteetind

empirically the rectangle with perimeter 40m andjést area possible. The software
allowed users to construct a rectangle, gradualtyiug the length of the sides,
keeping the perimeter fixed, and observing the equsent variation of the area. Due
to floating point arithmetit the software could only generate approximatelt®su
For example, one of the teachers found a rectamigfearea 1001 sides 10.03m

and 9.97m. He then showed great confusion: he amtldope with such a mismatch
at all. The authors comment:

[...] many teachers accepted the result given éystitware as conclusive. In one of the
experiments, six teachers working in pairs hagmtiuced the correct maximum area of
100nt but each pair had a different answer for the 8ileThey had ended up in a
deadlock, and were unable to figure out which efttiree values would be the correct
one. The investigation about the software ‘mistd&d’'to the necessity of finding a
theoretical solution for the problem. (Belfort a@dimarées, 1998, p. 5, our translation.)

Laudares and Lachini (2000) observed the procesdrofiuction of a computer
laboratory for the teaching of CalculusadCaL) in a large Brazilian university,
which had been following a traditional approachopef The interviews with the

! By floating point arithmeticyve understand the algebra of the discrete sepiofpemployed by computers, which is
constructed by means of approximations of the #téal real number system.



Calculus teachers showed that most of them belithetdaboratory activities would
be a waste of time, which should be spent withsctamm instruction, and that the
use of computer should be restricted to very compédculations. Observing the
activities in the laboratory, the authors comment:

One student, who works alone, types the data gbtblelem, strikes the keys for the
resolution and reads the answer on the screere 8§mdoes not have knowledge of the
mathematical subject, he doesn’t know if the angsveght. He then checks the answer
with a classmate and, without any query, proceedsd resolution of the next exercise.
He has great difficulty, not only with the maniptida of the device, but also does not
seem to understand the meaning of the results dpyé¢hne computer. For two students
who work together, the very first difficulty is twcess the system. [...] One of them types
the data of the problems, meanwhile the other osiEfpllows the activity.

When requested to clarify doubts, the instructetriets himself to commenting: ‘the
theory should be learnt in the classroom; the agtin LABCAL is only to calculate,
using the keys correctly.” Despite the fact thatythalk considerably about the activity,
the students do not seem to realise the aims of thhbg are doing. (Laudares and
Lachini, 2000, pp. 5-6, our translation.)

The authors conclude that the use of technologycoastitute an important
alternative for the traditional model of lecturewever, in designing computer
activities, it is necessary to work towards theaedlegment of a critical and
investigative perspective by students.

USING THEORETICAL-COMPUTATIONAL CONFLICTS TO ENRICH
CONCEPT IMAGES

Research quoted in the preceding section showsetative effects caused by the
misuse of computational environments in learningh@aatical concepts. The
experiments reported by Abrahao (1998), Belfort @udmaraes (1998), and
Laudares and Lachini (2000) suggest that suchtsfége strongly determined by the
activities’ design and by the attitudes of bothdstuts and teachers towards the
device. Hunteet al’s experiment, in particular, has uncoveratharowing effecon
concept images: the intrinsic characteristics efdbmputational representation led
to limitations in the concept images developeddayrers.

Many authors agree that the effects of computemmatimematics learning does not
depend on the devices themselves, but on the vegyatte (mis)used. Tall remarks
that:

In England, the use of calculators with young aleitdhas been discouraged in the hope
that their absence will enable children to builchtakarithmetic relationships. Perhaps
this attitude has more to do with the misuse ofctleulator (for performing calculations
without having to think) than with any inherent @etfin the apparatus itself. Used well —
to encourage reflection on mathematical ideas -€atmulator can be very beneficial.
(Tall, 2000, p. 212.)



Many limitations of computational representatiooasrhathematical concepts arise
from the algorithms’ finite nature. Let us consitlee example displayed on figure 1.

We see the graphs of the functidrig) =i1 and g(x) =ﬁ, respectively, both
X = X =

drawn byMaple Both the functions have a vertical asymptote atl, but this line
only appears on the picture of the graplh. & first analysis may suggest that this
outcome is a consequence of an arbitrary behawibtlve software — it would draw
the asymptote in some cases and would not in otAetaally, the software does not
identify the existence of the asymptote for eithiethe functions. The vertical line
displayed is drawn due to the fact that the intlfpan algorithm joins the points
carelessly, including one to the left of the didamnty to one on its right, that is, the
software does not consider the line as an asympiateaspart of the graph The
same does not occur in the casg because the lateral limitsxat1 are both

positive and the joining of the points occurs ofésmn. In a classroom situation, the
bypassing of a deeper explanation is likely to Is@adients to misinterpret the
computer’s apparently random behaviour as a ‘ctrsetution for the problem of
drawing the graphs dfandg. As an undesirable result, learners might build up
concept images dfhaving a vertical asymptote agahot having one. On the other
hand, the software ‘mistake’ can be positively usedhotivate the discussion about
the intrinsic limitations of the algorithm of dravg graphs by the interpolation of a
finite subset of points, and, therefore, a brodkeoretical understanding of real
functions (as Belfort and Guimaraes have observed).
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Figure 1 - The graphs of f (x) :xi—l (with a ‘fake’ asymptote) and g(x) =

2 Actually, Maple has a feature (discont=true) thaitches the algorithm to a more ‘careful’ one:peyforming an
algebraic analysis, previously to the interpolatibprevents the vertical line to be shown.




Another remarkable example of computer’s limitatido represent mathematical
objects is shown on figure 2. The figure displdys process of local magnificatibn
of y=2x?, around the poink, =1, performed by Maple. Since the curve is
differentiable, it should look like a straight liméhen highly magnified. Rather, due
to floating point errors, for very small valuesgy&phic window ranges (on orders
lower than10™®) it looks like a polygon. This unexpected outcaraa be easily
avoided by teachers (by interrupting the proce$srbat goes faulty). However, in
this case, students would probably remain unawltieedimitations associated with
the algorithm’s finite structure. As observed indkdo and Carvalho (2003), this
limitation can assume an enriching role: to underthat the mathematical process
of limit is beyond computer’s accuracy, no mattewtgood it is, and, therefore,
beyond any finite accuracy
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Figure 2 - The local magnification ofy=2x, with an unexpected polygon.

% The approach for the concept of derivative grodnate the notion of local straightness as a cogmitbot has been
suggested by David Tall (eg. Tall, 2000).



To focus more deeply on potential situations aselaescribed above, we have used
the termtheoretical-computational conflict to refer toany situation in which a
computational representation is apparently contcadiy to the associated
theoretical formulatior(see Giraldo, 2001; Giraldo and Carvalho, 2002).

THEORETICAL COMPUTATIONAL
FORMULATION REPRESENTATION

CONFLICT

Figure 3 - Theoretical-computational conflict.

THEORY: COMPUTER SCREEN: THEORY: COMPUTER SCREEN:
Bothf andg have (_ * The vertical line is The function is (_ _) The graph looks lik
vertical asymptotes. only shown for f. differentiable. a polygon.
CONFLICT CONFLICT

Figure 4 - The potential theoretical-computationalconflicts associated with the
examples displayed on figures 1 and 2, respectively

In our own interpretation, the narrowing effect eb®d in Hunteet al’s

experiment was due not to the occurrence of thisatetomputational conflicts, but,
on the contrary, to their absence. Overuse of céatipmal environments —
especially when not associated with other formepfesentation — may contribute
to shaping of the conception that the limitatiohghe representation are
characteristics of the mathematical concept itéedicling therefore to the
development of narrowed concept images. In faet;gBiska observes that:

Many different representations of functions aredusé which tables, graphs and analytic
formulae are the most widely known and used, &t laaschool. Awareness of the
limitations of each of the representations andhaft they represent one and the same
general concept are certainly fundamental conditmfrunderstanding functions.
(Sierpinska, 1992, p.49)

We hypothesize that, within a suitable approachyhich theoretical-computational
conflicts are emphasized, rather than avoided¢dlgaitive role of inherent
characteristics of each form of representation h@se a positiveonversion -they
may contribute not to the narrowing, but to theielmment of concept imageSn
that count, we aim to investigate how theoreticahputational conflicts act on the
development of learners’ concept images



A CASE STUDY 01

To investigate this hypothesis, we have 20
observed a sample of six first year b0
undergraduate students in Brazil (aged e

17 to 20), in twelve individual interviews
in which they dealt with situations of

(potential) theoretical-computational M0 80 60 40 20U D 40,60 & 10
conflicts. By the time the interviews B

started, the participants had just finished A0

the first calculus course, when they had 403

their very first formal contact with A0

derivatives. During that course, they had 00

two weekly traditional classroom lessons

and one weekly instruction in the Figure 5 - The graph ofh(x) =/x*+1,

computer lab, in which they worked with for -10C<x <10C and -100< y <100.
the softwaréMaple Global results are
currently being analyzed.

In this section, we will present results of ondhafse interviews, with the six
participants: Anténio, Carlos, Francisco, Julio,rtddo and Tiago. In this series of
interviews, the participants were given two différeepresentations for the function

h(x) =+/x* +1: the algebraic formula and the graph sketched bplMfor
(x,y) 0[-100,1007 (figure 5).

Due to the choice of the graphic window, the cuawquired the appearance of two
half-rays with ends at the origin (in fact, itslined asymptotes). The conflict here is
between the curve displayed on screen, which seéoealve a “corner”, and the
algebraic expression, which suggested it was eiffeable, as figure 6 illustrates.
Students were free to manipulate the softwareaswhanted. Each was asked:

You see on computer’s screen the graph of theiumb{x) =+/x* +1, for
—10C< x<10C and -100< y <100. Do you think it has a derivative?

ALGEBRAIC REPRESENTATION: COMPUTATIONAL REPRESENTATION:

h has a corner. <—1> h can be differentiated.

CONFLICT

Figure 6 - The potential conflict in the proposed gestion.



We will now report each participant’s strategynwestigating the question
(translated from Portuguese). Strategies will barsarized with the help of a
diagram, shown on figure 7, 8 and 9. The close&bogpresent the questidoes

h have a derivativeand its possible answeflshas a derivativer h doesn’t have a
derivative The dashed boxes represent the two given repegsaTs forh:
computational and algebraic. The arrows indicageitkerviewee’s actions and are
enumerated in chronological order. The boldfacevatindicates the decisive action,
that is, the one which led to final conclusion; &nel dashed arrow indicates the
moment when each participant realises the theatetmmputational conflict.

Antonio
Antonio claimed immediately th&thas a derivative:

Antonio: | think it's differentiable. Look, [pointthe formula]1] | see no reason why
it shouldn’t be[2]. This curve, if you look carefully [points the sen] it
meets the other one smoothly, not abruptly at atpgou know{3]? ... Look
at here [at the screen], without investigating bigeally, it seems... It's kind
of perfect, we can sdé]. But, | can’t be based on that, and say: oh, here
looks like a tiny curve, then it is. No! Sometimesiat seems to be is not. So

~1/2
... here it'’s the point 0, right? So, at the p&intll be (x2 +1) .2X [5],
then it'll be 0... So | know it has a derivatij&.
Francisco

Francisco started by saying:

Francisco: Looking at it, | think it doesn’t haaecornef1]. Then, it would have a
derivative[2]. Now, | want to understand, reasoning ... algelbili why it
won’t have a corner.

He proceeded:
Francisco: For example, if you made? , it would be\x\. It would have a corner. But

you've put +1 there, you can’t take it off the sppieoot completely, right
[3]? ... Visually it isn’t a corner, then, it wouldJeaa derivative. I'm
speaking in visual terms. Now, let’s speak algedaidy. Indeed,
algebraically, if you differentiate, you’ll managederive, then, it's
differentiable[4]. ... Can we zoom in here? [zooms [B] Yes, it looks like
a parabola. Zooming in there, you see clearly titsndifferentiable[6].

After concluding about the differentiability bf Francisco spontaneously went on
studying the function. He commented:

Francisco: That would be a good question. It Idikesa [straight] line, or is it a line
[7]? ... l know it has a derivative! I'll try to diffentiate it to see if it is a line
or not. [calculates the derivativi]]] Look! This function will have a
different slope for each point. It's not like the@dulus function, which



algebraic

i representation :

doesn’t have a derivative at 0, but has the sameati®e at the positive side
of x and the same one at the negative side for appaiv@s. This function is
different, it will be close to the modulus functiab+c and-o. It will be

close, but for each point it will have a differel@rivative. So, it looks like a

Does h have
a derivative?

i computational ;
i representation ;

h has a
derivative

h doesn’t have
a derivative

Antbnio’s strategy:

ok wnNE

examines the algebraic representation;
states thdi is differentiable;

observes the ‘fake’ corner;

reaffirms thah is differentiable;
evaluates the derivative;

concludes thdt is differentiable.

i representation :

Does h have
a derivative?

_____________________ N

algebraic 2/ computational
i representation :
..................... L B eyt

h doesn’t have
a derivative

h has a

Francisco’s strategy:

. examines the graph on the screen;
. supposes thétis differentiable;
. examines the algebraic equatign

. magnifies the graphic window;
. ensures thdt is differentiable;

. considers part of graph is linear;

1
2
3
4. concludes thdt is differentiable;
5
6
7
8. evaluates derivative.

Figure 7. Participants’ strategies on investigatinghe differentiability of h.

line, but is not a line.
Carlos
Carlos started by saying:

Carlos: ...Based on the visualization ... the rouighalization[1], at that point
where it's doing the bifurcation, initially we cabsay that at that point it's
not differentiablg?2]. ... The computer ... doesn’t have that accurashow,
here at the point O ... whether it's straight @ttlv’ from the shape of a
corner.

When we asked if he was sure, he replied:

Carlos: ... We’'d evaluate, at that point, theritémits, from the left and from the
right. Then, in this case, if the limits were drat, then at the point it
wouldn’t have a derivative.

On trying to evaluate the lateral limits, Carlosetved:



Carlos:

Julio

The point would be 0. So, the funcii(), would be equal to ... the square
root of 0 squared plus #(0) would be equal to 1 ... It doesn’t mai8h

[...] Actually, here you're using a very large intal, from —100 to 100.... I'd
have to make a better approximation of the gralptmls the interval, to
verify if the y-coordinate ok = 0, would be 0. [zooms ] Ah! Making an
approximation, it’'s almost ... parabolic. It's a'ee. Then, based on the...
zoom | made on the graph, we start ... we havanpeession that, as it's
making a curve, it's not a corner, then it has @vdéve at that poinf5].

Julio answered the question:

Julio:

Looking at it, | don’t know if it's curve amot[1]. | think that it was a second
degree thing, then you've taken the square rogtloén the degree became
one. It'll tend to be straight lines. ... As I'ike the root off, when | take off
the root it'll be the modulus of the thing whichlvdome off[2]. Then, the
function has a corngs].

Julio tried to eliminate the square root by mardging the function algebraically.
After extensively trying, he still did not managedo so, but even then he stuck with
the opinion thah would not be differentiable because a modulus d@ome out

from the square root elimination.

Does h have
a derivative?

Does h have
a derivative?

algebraic

h has a
derivative

Carlos’s strategy:
. examines on the screen;
. supposes thatis not differentiable;

: i computational
! representation ’_) representation

h doesn’t have
a derivative

. magnifies graphic window;

1
2
3. tries to evaluate left and right limits;
4
5

. concludes thdt is differentiable.

algebraic

2

h has a
derivative

Julio’s strategy:

: : i computational
: representation : g,....; representation

h doesn’t have
a derivative

1. examines the graph on the screen;
2. cannot cope with the algebra;
3. concludes thdt is not differentiable

Figure 8. Participants’ strategies on investigatinghe differentiability of h.



Tiago
Tiago was very straight in his answer:

Tiago: I'll treat the square root as being Kind>o?. So, in this case, you'd do a
power of a power, you'd have a polynomial. So, ey polynomial rule,
you'd have the derivative.

When asked about the graph, he replied:

Tiago: It seems not to have a derivative at Oirlkth... But this graph is just a ...
kind of an allegory. We have to think of the fupati purely.

Marcelo

Marcelo answered simply by saying that the funchead a derivative. When asked
why by us, he replied:

Marcelo: ... Because | imagined. ... I've deriwdder ones ... with something under the
root[1]. ... So, I imagined this one could be {8h Just that.

We then asked if, in his opinion, the graph waseceht with his answer. He
commented:

Marcelo: ... I had not paid any attention to thepir. Just now | noticed it... So what?
Does h have Does h have
a derivative? a derivative?
/ 1 /
i algebraic | i computational { " algebraic {"computational :
i representation £ i representation i representation i representation
2 .’1 2
*
R
’0
h has a h doesn’t have h has a h doesn’t have
derivative a derivative derivative a derivative
Tiagos’s strategy: Marcelo’s strategy:
1. examines the graph on the screen; 1. examines the algebraic expression;
2. concludes thét is not differentiable; 2. concludes thdt is differentiable.

3. rejects the graphic informati

Figure 9. Participants’ strategies on investigatinghe differentiability of h.



DISCUSSION

The data reveals a spectrum of performances. Amigriighly fluent with the ideas,
can see the function is differentiable symbolicadlgd visualises the essential ideas
without using the computer. Francisco can alsdlsatethe function is differentiable
symbolically, expects it to be smooth at the origmt zooms in to confirm this. He
even goes beyond the problem to note that, toetth@hd right of the origin, the
curve looks straight and checks that it cannotadlstioe linear. Carlos, on the other
hand, first suspects from the picture that the fionds not differentiable at the
origin, attempts to differentiate the expressiod ails. He then realisdg0) is 1,

not 0, and this causes him to zoom in to look atidical behaviour and to conclude
thath is differentiable. Jalio is deceived by the pietumto thinking it is not
differentiable, but cannot cope with the algebrd am accepts the pictorial evidence.
Tiago and Marcelo do not use the computer. Tiafferéintiates symbolically and
correctly concludes that the function is differabte. Marcelo, on the other hand
cannot differentiate the expression, yet believesdifferentiable.

Looking in more detail at each individual, we fitlcht Antonio concludes quickly
that the function is differentiable, and therefaneould look smoother if the picture
were zoomed in. He does not even need to changgadpéic window to be sure. He
realises the conflict and understands its soumestlimmediately. His awareness of
the device’s limitations prevents him from beingl®ad by the picture displayed on
the screen; he even remarks that the conclusiout ahe problentannot be based

on that Thus, in spite of the fact that he rapidly resslthe conflict, he has
experienced it, and it has acted to support higipus knowledge.

Francisco and Carlos both recognize the theoretmadputational conflict.

Francisco undertakes flexible connections betweamptitational and algebraic
representations in the course of the interview.ddisclusion about the
differentiability ofh is grounded in the algebraic representation —rpees that it is
differentiable by using the rules of differentiatid-urthermore, he makes use of the
computational representation, zooming in on th@lgréo build up a broader
understanding of the function’s local behaviourwdeer, the point to underline is
that Francisco spontaneously goes further, aftabéshing the answer for the
guestion initially proposed. He then formulatesthro question himself, referring to
the two parts of the graph to the left and righthaf origin:Is it really a straight line
or does it only look like a straight lindfd the investigation, another cognitive unit is
triggered:If the derivative is not constant, then the priwetfunction is not a

straight line The formulation of the question, which ended ym@ttivating a new
cognitive unit, was motivated by a conflict — thr@h, as seen on the screen, did not
match with the given algebraic expression (figure 1



ALGEBRAIC REPRESENTATION : COMPUTATIONAL REPRESENTATION :

h has a corner. <> h can be differentiated

Conflict

|

QUESTION:
Is it a straight line”’

y

CONCEPT IMAGE ENRICHMENT
If the derivative is not constant, t
primitive is not a straight line

Figure 10 - A conflict in Francisco’s reasoning.

On the other hand, the conflict motivates Julicdaay out a deeper exploration of
the proposed problem. However, from then on, he §omean exclusively algebraic
reasoning, dominated by the idea hat he should lsoweliminate the square root
That idea led him to a mistaken conclusion: thatftinction was not differentiable.

Tiago and Marcelo’s behaviours present similariteesach other, since they do not
refer to the computer in the course of the intewyienless requested to do so.
Nevertheless, other results in the wider studyr@nily being analyzed) suggest that
such similar behaviour is associated with quitéedéint mental attitudes. Tiago
consistently shows an almost exclusive trust inatlgebraic forms of representation;
the computer seems to be irrelevant to him. Marsktows resistance towards the
computer, in the sense that he avoids dealing th@ldevice whenever he can. As a
result the computer does not even constitute aftodlim.

Summarizing the detail, five out of six are affecte some way by the
computational-theoretical conflict. Antonio seeant resolves it immediately
without needing to use the computer. Francisco @lsckly resolves the problem,
but goes on to use the computer to explore thevb@inaaway from the origin.
Carlos and Julio are both affected by the visuetiype and sense the conflict which
Carlos is able to resolve using the computer, blb Js let down by the algebraic
manipulation. Tiago and Marcelo have little inteériesthe conflict and both attempt
to use the formula to solve the problem, but ongg®d works successfully with it.
When reminded of the computer picture, Tiago skeretis a problem but rejects it
as being an inadequate representation comparedheithigebra; Marcelo has no
interest in the computer picture.



The results of the experiment suggest that the@letomputational conflicts play
distinct roles for different students. Some, likarkcisco, Carlos and Julio, look first
at the picture on the screen; others, like Antofiago and Marcelo focus first on
the algebra. The conflict may either be immediasellyed (Antonio); barely noticed
(Tiago and Marcelo); or may stimulate a deeperagpion, which may or may not
lead to the mathematically correct answer (Frangi€arlos and Julio).

Perhaps, other conflict situations may act in éed#int fashion for the spectrum of
students. Indeed, this is a research question toMestigated. Their strategies and
conclusions are related to specific conceptiongudes, beliefs and previous
knowledge. Julio’s conclusion is a result of hisjwé understanding and dealing
with algebraic expressions, as he insistently sttoka certain procedure. Tiago’s
attitude seems to be associated with the conceftaira mathematical object is
perfectly defined by its algebraic representatlarfact, he suggests that tienks of
the function, purelyby focusing on its formula, so any feedback agdrom the
computer would be useless for him. For Marcelo cibvaputer constitutes an actual
barrier, which inhibits him from looking throughetlilevice and grasping its
potentiality to provide useful information.

Our ongoing research continues to study how pdati@aspects of the concept may
be highlighted by suitably designed conflict sitaas (not necessarily involving
computational environments), and hence support stactent in the maturation of
subtle features in their concept images. Of cowrsewish to encourage the building
of a richer concept image, which happens in vaneags with different students.
Our wider goal is to investigate students’ mentaduales associated with different
behaviours and triggered by theoretical-computaticonflict situations. We aim to
comprehend if and how the approach to the condeg¢rovative can be suitably
designed to prompt a positive role for conflictetwich learners’ concept images.
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