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Recent literature has pointed out pedagogical obstacles associated with the use of 
computational environments in the learning of mathematics. In this paper, we focus 
on the pedagogical role of the computer’s inherent limitations in the development of 
learners’ concept images of derivative. In particular, we intend to discuss how the 
approach to this concept can be designed to prompt a positive conversion of those 
limitations for the enrichment of concept images. We present results of a case study 
with six undergraduate students in Brazil, dealing with situation of theoretical-
computational conflict. 

INTRODUCTION 

A wide range of issues related to the use of technology on the teaching of 
Mathematics has been discussed in the literature. Some research studies report 
experiments in which a narrowing effect takes place: limitations of the 
computational representation lead to the development of restricted concept images 
by learners (e.g. Hunter et al, 1993). The aim of this research is to discuss how the 
pedagogical role of those limitations can be positively converted to enrich students’ 
concept image of derivative. We have defined a theoretical-computational conflict to 
be any situation in which a computational representation for a mathematical concept 
is (at least potentially) contradictory to the associated theoretical formulation 
(Giraldo, 2001; Giraldo and Carvalho, 2002). For example, numerical calculation 
with machine accuracy cannot be performed in a way that corresponds exactly to the 
mathematical theory of limits. Our hypothesis is that, if theoretical-computational 
conflicts are emphasized, rather than avoided, they may contribute not to narrow, but 
to enrich concept images. In this paper, we will present some results of an 
experiment, in which we have observed a sample of six undergraduates students, 
from a Brazilian university, dealing with theoretical-computational conflict 
situations. 

CONCEPT IMAGES AND COGNITIVE UNITS 

In the theory developed by Tall and Vinner (1981), the concept image is the total 
cognitive structure associated to a mathematical concept in an individual’s mind. It 
includes all the mental pictures, properties, mental associations and processes related 
to a given concept, and is continually constructed as the individual matures, 
changing with new stimuli and all kinds of experiences. Moreover, the concept 



 

 

 

image may (or not) be associated to a statement used to specify that concept, named 
the concept definition by the authors. A concept definition, in its turn, may (or not) 
be coherent with the formal mathematical definition (that is, the concept definition 
usually accepted by the mathematical community). Thus, the individual’s concept 
image may or not include the formally correct definition (see also Vinner 1983, 
1991; Tall, 2000).  
Tall and Barnard (1997) have named as a cognitive unit each chunk of the concept 
image in which an individual can focus attention at a time. Cognitive units may be 
symbols, theorems, representations, properties or any other aspects related to the 
concept. The authors claim that the ability to build multiple and flexible connections 
between and within cognitive units, and therefore to reach important information 
whenever necessary, is an important feature to the development of powerful 
mathematical thinking. Thurston (1990) affirms that human strategies to understand 
mathematics often demand a process of mental compression, in which ideas can be 
quickly and completely recalled. In this way, a rich concept image must include, not 
only the formal definition, but a large number of linkages both within cognitive units 
and between them. 
In this paper we focus, more specifically, on a particular facet of the relation between 
concept image and formal definition: how apparent contradictions of computational 
representation with respect to formal definitions can be used to prompt more flexible 
concept images.  
THE USE OF COMPUTERS IN MATHEMATICS TEACHING 

In this investigation, we intend to focus on the positive use of technology in 
mathematics learning. However, it is important to remark that research shows that 
misused computational environments can have negative (or at least unhelpful) effects 
in mathematics education. The theory quoted above suggests, in particular, that 
teaching the concept of derivative must comprise different approaches and 
representations, to enable learners to build up multiple and flexible connections of 
cognitive units and, therefore, a rich concept image. Each representation gives 
emphasis to certain aspects of the concept, but also blots out others. Tall (2000) 
affirms that the focus on certain aspects and the negligence of others may result in 
the atrophy of neglected ones. The literature provides some examples in which that 
process takes place on computer-based approaches. 

An instance is found in Hunter et al. (1993). The authors observed that students 
using software Derive in computer-based instruction did not need to substitute 
values to get a table and sketch the graph. As an unforeseen consequence, some 
students who could calculate values by substitution before the course seemed to have 
lost the skill afterwards. Before and after the experiment, a sample of seventeen 
students was asked: 

What can you say about u if u = v + 3 and v = 1? 



 

 

 

None of the students who had failed on the pre-test improved on the post-test and, 
moreover, six who had given satisfactory answers on the pre-test failed on the post-
test. 

Results of recent research developed in Brazil also reveal difficulties of students and 
teachers about the use of new technologies. Abrahão (1998) observed the reactions 
of four secondary teachers dealing with graphs of functions produced by computers 
and graphic calculators. In the activities applied, results given by the devices seemed 
to contradict the mathematical theory, due to software limitations or inadequacy of 
visualization windows. In the course of the experiment, the teachers hesitated to take 
into consideration the fact that computers can provide “mistaken” or “incomplete” 
results. In fact, those results were often accepted by participants as correct without 
query, even when clearly clashing with their prior knowledge. The author comments: 

All the teachers, even the ones who knew the computers had limitations, seemed, initially, 
to believe in the computer results, rather than in their own knowledge. [...] When asked to 
interpret some unusual graphs produced by computers, the interviewees had some 
difficulties. We observed that the comprehension of graphs generated by technology is 
not immediate. Teachers did not always manage to reconcile their knowledge with the 
visualization on screen. (Abrahão, 1998, p. 23, our translation) 

Similar results are reported by Belfort and Guimarães (1998). The authors observed 
teachers’ behaviour in the course of activities on dynamic geometry, using the 
software SketchPad. In one of the activities, participants were asked to find 
empirically the rectangle with perimeter 40m and largest area possible. The software 
allowed users to construct a rectangle, gradually varying the length of the sides, 
keeping the perimeter fixed, and observing the consequent variation of the area. Due 
to floating point arithmetic1, the software could only generate approximate results. 
For example, one of the teachers found a rectangle with area 100m2, sides 10.03m 
and 9.97m. He then showed great confusion: he could not cope with such a mismatch 
at all. The authors comment: 

[...] many teachers accepted the result given by the software as conclusive. In one of the 
experiments, six teachers working in pairs had all produced the correct maximum area of 
100m2 but each pair had a different answer for the side AB. They had ended up in a 
deadlock, and were unable to figure out which of the three values would be the correct 
one. The investigation about the software ‘mistake’ led to the necessity of finding a 
theoretical solution for the problem. (Belfort and Guimarães, 1998, p. 5, our translation.) 

Laudares and Lachini (2000) observed the process of introduction of a computer 
laboratory for the teaching of Calculus (LABCAL) in a large Brazilian university, 
which had been following a traditional approach before. The interviews with the 

                                           
1 By floating point arithmetic, we understand the algebra of the discrete set of points employed by computers, which is 

constructed by means of approximations of the theoretical real number system. 



 

 

 

Calculus teachers showed that most of them believed that laboratory activities would 
be a waste of time, which should be spent with classroom instruction, and that the 
use of computer should be restricted to very complex calculations. Observing the 
activities in the laboratory, the authors comment: 

One student, who works alone, types the data of the problem, strikes the keys for the 
resolution and reads the answer on the screen. Since he does not have knowledge of the 
mathematical subject, he doesn’t know if the answer is right. He then checks the answer 
with a classmate and, without any query, proceeds to the resolution of the next exercise. 
He has great difficulty, not only with the manipulation of the device, but also does not 
seem to understand the meaning of the results given by the computer. For two students 
who work together, the very first difficulty is to access the system. [...] One of them types 
the data of the problems, meanwhile the other one just follows the activity. 
When requested to clarify doubts, the instructor restricts himself to commenting: ‘the 
theory should be learnt in the classroom; the activity in LABCAL is only to calculate, 
using the keys correctly.’ Despite the fact that they talk considerably about the activity, 
the students do not seem to realise the aims of what they are doing. (Laudares and 
Lachini, 2000, pp. 5-6, our translation.) 

The authors conclude that the use of technology can constitute an important 
alternative for the traditional model of lecture, however, in designing computer 
activities, it is necessary to work towards the development of a critical and 
investigative perspective by students. 

USING THEORETICAL-COMPUTATIONAL CONFLICTS TO ENRICH  
CONCEPT IMAGES 

Research quoted in the preceding section shows the negative effects caused by the 
misuse of computational environments in learning mathematical concepts. The 
experiments reported by Abrahão (1998), Belfort and Guimarães (1998), and 
Laudares and Lachini (2000) suggest that such effects are strongly determined by the 
activities’ design and by the attitudes of both students and teachers towards the 
device. Hunter et al.’s experiment, in particular, has uncovered a narrowing effect on 
concept images: the intrinsic characteristics of the computational representation led 
to limitations in the concept images developed by learners. 

Many authors agree that the effects of computers on mathematics learning does not 
depend on the devices themselves, but on the way they are (mis)used. Tall remarks 
that: 

In England, the use of calculators with young children has been discouraged in the hope 
that their absence will enable children to build mental arithmetic relationships. Perhaps 
this attitude has more to do with the misuse of the calculator (for performing calculations 
without having to think) than with any inherent defect in the apparatus itself. Used well – 
to encourage reflection on mathematical ideas – the calculator can be very beneficial. 
(Tall, 2000, p. 212.) 



 

 

 

Many limitations of computational representations for mathematical concepts arise 
from the algorithms’ finite nature. Let us consider the example displayed on figure 1. 

We see the graphs of the functionsf (x) = 1
x −1

 and g(x) = 1

(x −1)2
, respectively, both 

drawn by Maple. Both the functions have a vertical asymptote at x = 1, but this line 
only appears on the picture of the graph of f. A first analysis may suggest that this 
outcome is a consequence of an arbitrary behaviour of the software – it would draw 
the asymptote in some cases and would not in others. Actually, the software does not 
identify the existence of the asymptote for either of the functions. The vertical line 
displayed is drawn due to the fact that the interpolation algorithm joins the points 
carelessly, including one to the left of the discontinuity to one on its right, that is, the 
software does not consider the line as an asymptote, but as part of the graph2. The 
same does not occur in the case of g because the lateral limits at x=1 are both 
positive and the joining of the points occurs offscreen. In a classroom situation, the 
bypassing of a deeper explanation is likely to lead students to misinterpret the 
computer’s apparently random behaviour as a ‘correct’ solution for the problem of 
drawing the graphs of f and g. As an undesirable result, learners might build up 
concept images of f having a vertical asymptote and g not having one. On the other 
hand, the software ‘mistake’ can be positively used to motivate the discussion about 
the intrinsic limitations of the algorithm of drawing graphs by the interpolation of a 
finite subset of points, and, therefore, a broader theoretical understanding of real 
functions (as Belfort and Guimarães have observed). 

  

Figure 1 - The graphs of 
1

1
)(

−
=

x
xf   (with a ‘fake’ asymptote) and g(x) = 1

(x −1)2
. 

                                           
2 Actually, Maple has a feature (discont=true) that switches the algorithm to a more ‘careful’ one: by performing an 

algebraic analysis, previously to the interpolation, it prevents the vertical line to be shown. 



 

 

 

Another remarkable example of computer’s limitations to represent mathematical 
objects is shown on figure 2. The figure displays the process of local magnification3 
of y = 2x2, around the point x0 = 1, performed by Maple. Since the curve is 
differentiable, it should look like a straight line when highly magnified. Rather, due 
to floating point errors, for very small values of graphic window ranges (on orders 
lower than 610− ) it looks like a polygon. This unexpected outcome can be easily 
avoided by teachers (by interrupting the process before it goes faulty). However, in 
this case, students would probably remain unaware of the limitations associated with 
the algorithm’s finite structure. As observed in Giraldo and Carvalho (2003), this 
limitation can assume an enriching role: to underline that the mathematical process 
of limit is beyond computer’s accuracy, no matter how good it is, and, therefore, 
beyond any finite accuracy. 

 

Figure 2 - The local magnification of y=2x2, with an unexpected polygon. 

                                           
3 The approach for the concept of derivative grounded on the notion of local straightness as a cognitive root has been 

suggested by David Tall (eg. Tall, 2000). 



 

 

 

To focus more deeply on potential situations as those described above, we have used 
the term theoretical-computational conflict to refer to any situation in which a 
computational representation is apparently contradictory to the associated 
theoretical formulation (see Giraldo, 2001; Giraldo and Carvalho, 2002).

Figure 3 - Theoretical-computational conflict.

Figure 4 - The potential theoretical-computational conflicts associated with the 
examples displayed on figures 1 and 2, respectively. 

In our own interpretation, the narrowing effect observed in Hunter et al.’s 
experiment was due not to the occurrence of theoretical–computational conflicts, but, 
on the contrary, to their absence. Overuse of computational environments – 
especially when not associated with other forms of representation – may contribute 
to shaping of the conception that the limitations of the representation are 
characteristics of the mathematical concept itself, leading therefore to the 
development of narrowed concept images. In fact, Sierpinska observes that: 

Many different representations of functions are used, of which tables, graphs and analytic 
formulae are the most widely known and used, at least at school. Awareness of the 
limitations of each of the representations and of that they represent one and the same 
general concept are certainly fundamental conditions of understanding functions. 
(Sierpinska, 1992, p.49) 

We hypothesize that, within a suitable approach, in which theoretical-computational 
conflicts are emphasized, rather than avoided, the cognitive role of inherent 
characteristics of each form of representation may have a positive conversion - they 
may contribute not to the narrowing, but to the enrichment of concept images. On 
that count, we aim to investigate how theoretical-computational conflicts act on the 
development of learners’ concept images. 

THEORY:  
Both f and g have 

vertical asymptotes. 

COMPUTER SCREEN: 
The vertical line is 
only shown for f. 

 

CONFLICT 

THEORY:  
The function is 
differentiable. 

COMPUTER SCREEN: 

The graph looks like 

a polygon. 

CONFLICT  
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A CASE STUDY 

To investigate this hypothesis, we have 
observed a sample of six first year 
undergraduate students in Brazil (aged 
17 to 20), in twelve individual interviews 
in which they dealt with situations of 
(potential) theoretical-computational 
conflicts. By the time the interviews 
started, the participants had just finished 
the first calculus course, when they had 
their very first formal contact with 
derivatives. During that course, they had 
two weekly traditional classroom lessons 
and one weekly instruction in the 
computer lab, in which they worked with 
the software Maple. Global results are 
currently being analyzed.  

In this section, we will present results of one of those interviews, with the six 
participants: Antônio, Carlos, Francisco, Júlio, Marcelo and Tiago. In this series of 
interviews, the participants were given two different representations for the function 

h(x) = x2 +1: the algebraic formula and the graph sketched by Maple for 
(x,y) ∈ [−100,100]2 (figure 5).  

Due to the choice of the graphic window, the curve acquired the appearance of two 
half-rays with ends at the origin (in fact, its inclined asymptotes). The conflict here is 
between the curve displayed on screen, which seemed to have a “corner”, and the 
algebraic expression, which suggested it was differentiable, as figure 6 illustrates. 
Students were free to manipulate the software as they wanted. Each was asked: 

You see on computer’s screen the graph of the function h(x) = x2 +1, for 
−100≤ x ≤100 and 100100 ≤≤− y . Do you think it has a derivative? 

Figure 6 - The potential conflict in the proposed question. 

 

Figure 5 - The graph of h(x) = x2 + 1, 
for −100≤ x ≤ 100 and 100100 ≤≤− y . 

 

ALGEBRAIC REPRESENTATION: 
h has a corner. 

COMPUTATIONAL REPRESENTATION: 
h can be differentiated. 

CONFLICT   



 

 

 

We will now report each participant’s strategy in investigating the question 
(translated from Portuguese). Strategies will be summarized with the help of a 
diagram, shown on figure 7, 8 and 9. The closed boxes represent the question: Does 
h have a derivative; and its possible answers: h has a derivative or h doesn’t have a 
derivative. The dashed boxes represent the two given representations for h: 
computational and algebraic. The arrows indicate the interviewee’s actions and are 
enumerated in chronological order. The boldface arrow indicates the decisive action, 
that is, the one which led to final conclusion; and the dashed arrow indicates the 
moment when each participant realises the theoretical-computational conflict. 

Antônio 

Antônio claimed immediately that h has a derivative: 

Antônio: I think it’s differentiable. Look, [points the formula] [1] I see no reason why 
it shouldn’t be [2]. This curve, if you look carefully [points the screen] it 
meets the other one smoothly, not abruptly at a point, you know [3]? ... Look 
at here [at the screen], without investigating algebraically, it seems... It’s kind 
of perfect, we can see [4]. But, I can’t be based on that, and say: oh, here it 
looks like a tiny curve, then it is. No! Sometimes, what seems to be is not. So 

... here it’s the point 0, right? So, at the point 0 it’ll be x2 +1( )−1/2
.2x  [5], 

then it’ll be 0... So I know it has a derivative [6]. 

Francisco 

Francisco started by saying: 

Francisco:  Looking at it, I think it doesn’t have a corner [1]. Then, it would have a 
derivative [2]. Now, I want to understand, reasoning ... algebraically why it 
won’t have a corner. 

He proceeded: 

Francisco: For example, if you made x2 , it would be x . It would have a corner. But 

you’ve put +1 there, you can’t take it off the square root completely, right 
[3]? ... Visually it isn’t a corner, then, it would have a derivative. I’m 
speaking in visual terms. Now, let’s speak algebraically. Indeed, 
algebraically, if you differentiate, you’ll manage to derive, then, it’s 
differentiable [4]. ... Can we zoom in here? [zooms in.] [5] Yes, it looks like 
a parabola. Zooming in there, you see clearly how it’s differentiable [6]. 

After concluding about the differentiability of h, Francisco spontaneously went on 
studying the function. He commented: 

Francisco: That would be a good question. It looks like a [straight] line, or is it a line 
[7]? ... I know it has a derivative! I’ll try to differentiate it to see if it is a line 
or not. [calculates the derivative] [8] Look! This function will have a 
different slope for each point. It’s not like the modulus function, which 



 

 

 

doesn’t have a derivative at 0, but has the same derivative at the positive side 
of x and the same one at the negative side for all the points. This function is 
different, it will be close to the modulus function at +∞  and ∞− . It will be 
close, but for each point it will have a different derivative. So, it looks like a 

line, but is not a line. 

Carlos 

Carlos started by saying: 

Carlos:  …Based on the visualization ... the rough visualization [1], at that point 
where it’s doing the bifurcation, initially we could say that at that point it’s 
not differentiable [2]. ... The computer ... doesn’t have that accuracy to show, 
here at the point 0 ... whether it’s straight or that ‘V’ from the shape of a 
corner. 

When we asked if he was sure, he replied: 

Carlos:  ... We’d evaluate, at that point, the lateral limits, from the left and from the 
right. Then, in this case, if the limits were different, then at the point it 
wouldn’t have a derivative. 

On trying to evaluate the lateral limits, Carlos observed: 

 

h has a 
derivative 

Does h have  
a derivative? 

algebraic 
representation 

Antônio´s strategy: 
 
1.  examines the algebraic representation; 
2.  states that h is differentiable; 
3.  observes the ‘fake’ corner; 
4.  reaffirms that h is differentiable; 
5.  evaluates the derivative; 
6.  concludes that h is differentiable. 

computational 
representation 

h doesn´t have 
a derivative 

2  5 6 

3 
 

4 
 

1 

h has a 
derivative 

Does h have  
a derivative? 

algebraic 
representation 

Francisco´s strategy: 
 
1.  examines the graph on the screen; 
2.  supposes that h is differentiable; 
3.  examines the algebraic equation; 
4.  concludes that h is differentiable; 
5.  magnifies the graphic window; 
6.  ensures that h is differentiable; 
7. considers part of graph is linear; 
8. evaluates derivative. 

computational 
representation 

h doesn´t have 
a derivative 

5 

6 3 
 

4 
 

1 

2 

7 8 

 

Figure 7. Participants’ strategies on investigating the differentiability of h. 

 



 

 

 

Carlos:  The point would be 0. So, the function f(0), would be equal to ... the square 
root of 0 squared plus 1. f(0) would be equal to 1 ... It doesn’t match [3]. 

 […] Actually, here you’re using a very large interval, from –100 to 100.... I’d 
have to make a better approximation of the graph, shrink the interval, to 
verify if the y-coordinate of x = 0, would be 0. [zooms in] [4] Ah! Making an 
approximation, it’s almost ... parabolic. It’s a curve. Then, based on the... 
zoom I made on the graph, we start ... we have the impression that, as it’s 
making a curve, it’s not a corner, then it has a derivative at that point [5]. 

Júlio 

Júlio answered the question: 

Júlio: Looking at it, I don’t know if it’s curve or not [1]. I think that it was a second 
degree thing, then you’ve taken the square root off, then the degree became 
one. It’ll tend to be straight lines. ... As I’ll take the root off, when I take off 
the root it’ll be the modulus of the thing which will come off [2]. Then, the 
function has a corner [3]. 

Júlio tried to eliminate the square root by manipulating the function algebraically. 
After extensively trying, he still did not manage to do so, but even then he stuck with 
the opinion that h would not be differentiable because a modulus would come out 
from the square root elimination. 

Figure 8. Participants’ strategies on investigating the differentiability of h. 

 

h has a 
derivative 

Does h have  
a derivative? 

algebraic 
representation 

Carlos´s strategy: 
1.  examines on the screen; 
2.  supposes that h is not differentiable; 
3.  tries to evaluate left and right limits; 
4.  magnifies graphic window; 
5.  concludes that h is differentiable. 

computational 
representation 

h doesn´t have 
a derivative 

5 

2 
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h has a 
derivative 

Does h have  
a derivative? 

algebraic 
representation 

Julio´s strategy: 
 
1.  examines the graph on the screen; 
2.  cannot cope with the algebra; 
3.  concludes that h is not differentiable. 

computational 
representation 

h doesn´t have 
a derivative 

2 

3 
 

1 

 



 

 

 

Tiago 

Tiago was very straight in his answer: 

Tiago: I’ll treat the square root as being kind of x
1
2. So, in this case, you’d do a 

power of a power, you’d have a polynomial. So, by the polynomial rule, 
you’d have the derivative. 

When asked about the graph, he replied: 

Tiago: It seems not to have a derivative at 0, I think. ... But this graph is just a ... 
kind of an allegory. We have to think of the function, purely.  

Marcelo 

Marcelo answered simply by saying that the function had a derivative. When asked 
why by us, he replied: 

Marcelo:  ... Because I imagined. ... I’ve derived other ones ... with something under the 
root [1]. ... So, I imagined this one could be too [2]. Just that. 

We then asked if, in his opinion, the graph was coherent with his answer. He 
commented: 

Marcelo: ... I had not paid any attention to the graph. Just now I noticed it… So what? 

 

h has a 
derivative 

Does h have  
a derivative? 

algebraic 
representation 

Tiagos´s strategy: 
 
1.  examines the graph on the screen; 
2.  concludes that h is not differentiable; 
3.  rejects the graphic information. 

computational 
representation 

h doesn´t have 
a derivative 

2 

3 
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h has a 
derivative 

Does h have  
a derivative? 

algebraic 
representation 

Marcelo´s strategy: 
 
1.  examines the algebraic expression; 
2.  concludes that h is differentiable. 

computational 
representation 

h doesn´t have 
a derivative 

2 

1 

 

Figure 9. Participants’ strategies on investigating the differentiability of h. 



 

 

 

DISCUSSION 

The data reveals a spectrum of performances. Antônio is highly fluent with the ideas, 
can see the function is differentiable symbolically, and visualises the essential ideas 
without using the computer. Francisco can also see that the function is differentiable 
symbolically, expects it to be smooth at the origin and zooms in to confirm this. He 
even goes beyond the problem to note that, to the left and right of the origin, the 
curve looks straight and checks that it cannot actually be linear. Carlos, on the other 
hand, first suspects from the picture that the function is not differentiable at the 
origin, attempts to differentiate the expression and fails. He then realises h(0) is 1, 
not 0, and this causes him to zoom in to look at the local behaviour and to conclude 
that h is differentiable. Júlio is deceived by the picture into thinking it is not 
differentiable, but cannot cope with the algebra and so accepts the pictorial evidence. 
Tiago and Marcelo do not use the computer. Tiago differentiates symbolically and 
correctly concludes that the function is differentiable. Marcelo, on the other hand 
cannot differentiate the expression, yet believes it is differentiable. 

Looking in more detail at each individual, we find that Antônio concludes quickly 
that the function is differentiable, and therefore it would look smoother if the picture 
were zoomed in. He does not even need to change the graphic window to be sure. He 
realises the conflict and understands its source almost immediately. His awareness of 
the device’s limitations prevents him from being misled by the picture displayed on 
the screen; he even remarks that the conclusion about the problem cannot be based 
on that. Thus, in spite of the fact that he rapidly resolves the conflict, he has 
experienced it, and it has acted to support his previous knowledge. 

Francisco and Carlos both recognize the theoretical-computational conflict. 
Francisco undertakes flexible connections between computational and algebraic 
representations in the course of the interview. His conclusion about the 
differentiability of h is grounded in the algebraic representation – he argues that it is 
differentiable by using the rules of differentiation. Furthermore, he makes use of the 
computational representation, zooming in on the graph, to build up a broader 
understanding of the function’s local behaviour. However, the point to underline is 
that Francisco spontaneously goes further, after establishing the answer for the 
question initially proposed. He then formulates another question himself, referring to 
the two parts of the graph to the left and right of the origin: Is it really a straight line 
or does it only look like a straight line? In the investigation, another cognitive unit is 
triggered: If the derivative is not constant, then the primitive function is not a 
straight line. The formulation of the question, which ended up by activating a new 
cognitive unit, was motivated by a conflict – the graph, as seen on the screen, did not 
match with the given algebraic expression (figure 1



 

 

 

Figure 10 - A conflict in Francisco’s reasoning. 

On the other hand, the conflict motivates Júlio to carry out a deeper exploration of 
the proposed problem. However, from then on, he goes for an exclusively algebraic 
reasoning, dominated by the idea hat he should somehow eliminate the square root. 
That idea led him to a mistaken conclusion: that the function was not differentiable. 

Tiago and Marcelo’s behaviours present similarities to each other, since they do not 
refer to the computer in the course of the interview, unless requested to do so. 
Nevertheless, other results in the wider study (currently being analyzed) suggest that 
such similar behaviour is associated with quite different mental attitudes. Tiago 
consistently shows an almost exclusive trust in the algebraic forms of representation; 
the computer seems to be irrelevant to him. Marcelo shows resistance towards the 
computer, in the sense that he avoids dealing with the device whenever he can. As a 
result the computer does not even constitute a tool for him.  

Summarizing the detail, five out of six are affected in some way by the 
computational-theoretical conflict. Antônio sees it and resolves it immediately 
without needing to use the computer. Francisco also quickly resolves the problem, 
but goes on to use the computer to explore the behaviour away from the origin. 
Carlos and Julio are both affected by the visual picture and sense the conflict which 
Carlos is able to resolve using the computer, but Julio is let down by the algebraic 
manipulation. Tiago and Marcelo have little interest in the conflict and both attempt 
to use the formula to solve the problem, but only Tiago works successfully with it. 
When reminded of the computer picture, Tiago sees there is a problem but rejects it 
as being an inadequate representation compared with the algebra; Marcelo has no 
interest in the computer picture. 

A LG EBR A IC REP R ES EN TA TIO N :
h has a corner.

CO M PU TA TIO N A L REP R ESEN TA TIO N :
h ca n be d iffere nt iated.

C onflict

QU E ST IO N:
Is it a  stra igh t line?

CO N C EP T IM A G E  E NR IC H M E N T:
If the der iva tive  is  no t constan t, the

pr im itive  is no t a  stra igh t l ine .



 

 

 

The results of the experiment suggest that theoretical-computational conflicts play 
distinct roles for different students. Some, like Francisco, Carlos and Júlio, look first 
at the picture on the screen; others, like Antônio, Tiago and Marcelo focus first on 
the algebra. The conflict may either be immediately solved (Antônio); barely noticed 
(Tiago and Marcelo); or may stimulate a deeper exploration, which may or may not 
lead to the mathematically correct answer (Francisco, Carlos and Júlio). 

Perhaps, other conflict situations may act in a different fashion for the spectrum of 
students. Indeed, this is a research question to be investigated. Their strategies and 
conclusions are related to specific conceptions, attitudes, beliefs and previous 
knowledge. Júlio’s conclusion is a result of his way of understanding and dealing 
with algebraic expressions, as he insistently sticks to a certain procedure. Tiago’s 
attitude seems to be associated with the conception that a mathematical object is 
perfectly defined by its algebraic representation. In fact, he suggests that he thinks of 
the function, purely, by focusing on its formula, so any feedback arising from the 
computer would be useless for him. For Marcelo, the computer constitutes an actual 
barrier, which inhibits him from looking through the device and grasping its 
potentiality to provide useful information. 

Our ongoing research continues to study how particular aspects of the concept may 
be highlighted by suitably designed conflict situations (not necessarily involving 
computational environments), and hence support each student in the maturation of 
subtle features in their concept images. Of course, we wish to encourage the building 
of a richer concept image, which happens in various ways with different students. 
Our wider goal is to investigate students’ mental attitudes associated with different 
behaviours and triggered by theoretical-computational conflict situations. We aim to 
comprehend if and how the approach to the concept of derivative can be suitably 
designed to prompt a positive role for conflicts to enrich learners’ concept images. 
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