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We draw on a series of themed Focus Group interviews with mathematicians from six
universities in the UK (and in which pre-distributed samples of mathematical
problems, typical written student responses, observation protocols, interview
transcripts and outlines of bibliography were used to trigger an exploration of
pedagogical issues) in order to discuss the interplay between syntactic and semantic
knowledge in proof production (Weber & Alcock, 2004). In particular we focus on
participants’ views of how fluency in syntactic knowledge can be seen as a facilitator
of mathematical communication and a sine-qua-non of students’ enculturation into
the sociocultural practices of university mathematics.
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INTRODUCTION

In 2004 Weber and Alcock proposed a theoretical framework for understanding the
process through which undergraduate students (and mathematicians) engage with
proof. Refining and clarifying what is meant by ‘formal’ and ‘intuitive’ reasoning
(Weber and Alcock, 2004, p210) the authors suggested that proof production can be
of two different kinds: syntactic proof production and semantic proof production.
They define syntactic proof production as

one which is written solely by manipulating correctly stated definitions and other relevant
facts in a logically permissible way. [...] A syntactic proof production can be colloguially
defined as a proof in which all one does is ‘unwrap the definitions’ and ‘push symbols’.

(p210)
and as semantic proof production

to be a proof of a statement in which the prover uses instantiation(s) of the mathematical
object(s) to which the statement applies to suggest and guide the formal inferences that
he or she draws. (p210)
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In this context syntactic knowledge and semantic knowledge are the abilities and
knowledge required to produce syntactic or semantic proofs (p229). The studies from
which this theoretical framework emerged are empirical, data-grounded studies and
involved observation of undergraduate students, doctoral students and
mathematicians as they worked on proving various mathematical statements
(typically in Group Theory or Analysis). The participants were asked to ‘talk aloud’
while writing their proofs and were in some cases interviewed during this process.
Amongst the conclusions the authors draw from their studies, is that

The abilities and knowledge required to produce syntactic proofs about a concept appear
to be relatively modest. The prover would need to be able to recite the definition of a
mathematical concept as well as recall important facts and theorems concerning that
concept. The prover would also need to be able to derive valid inferences from the
concept’s definition and associated facts. (p229)

while the knowledge required to produce semantic proofs appears fo be more
complex (p229). The authors conclude that

Hence, writing a proof by syntactic means alone can be a formidable task. However,
when writing a proof semantically, one can use instantiations of relevant objects to guide
the formal inferences that one draws, just as one could use a map to suggest the directions
that they should prescribe. Semantic proof production is therefore likely to lead to correct
proofs much more efficiently. ( p232)

In this paper we wish to investigate how syntactic and semantic knowledge concur in
proof production. The data we draw from illustrate the perspectives of
mathematicians as they reflected on proofs produced by their students (as part of
written coursework). In what follows we briefly introduce the study they originated
in.

THE STUDY

The data we present originate from a study’ which engaged mathematicians from
across the UK as educational co-researchers; in particular, the study engaged
university lecturers” of mathematics (more details on the participants to the study can
be found in lannone & Nardi, 2005) in a series of Focused Group Interviews (Wilson,
1997), each focusing on a theme regarding the teaching and learning of mathematics
at university level that the literatare and our previous work acknowledge as seminal.
These themes were:

e Formal Mathematical Reasoning I: students' perceptions of proof and its
necessity;

! Supported by the Learning and Teaching Support Network in the UK.

2 In the text we refer to the participants of the study as Lecturers. Meanings of this term differ across different
countries. We use it here to denote somebody who is a member of staff in a mathematics department involved in both
teaching and research.
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s Mathematical objects I: the concept of /imifs across mathematical contexts;

e Mediating mathematical meaning.: symbols and graphs;

e Mathematical objects II: the concept of function across mathematical topics;

e Formal mathematical reasoning II: students' enactment of proving techniques,

o A Mela-cycle: collaborative generation of research findings in mathematics
education.

Discussion of the theme in each interview was initiated by a Dataset that consisted of:

o a short literature review and bibliography;

o samples of student data (e.g.: students’ written work, interview transcripts,
observation protocols) collected in the course of our previous studies; and,

e a short list of issues to consider. We note that, despite the presence of this list,
we gave priority to eliciting participants’ own perspectives and kept a minimal
role in manipulating the direction the discussions took (Madriz, 2000).

Analysis of the interview transcripts largely followed Data Grounded Theory
techniques (Glaser and Strauss, 1967) and resulted in thematically arranged sets of
Episodes — see elsewhere (e.g. lannone & Nardi, 2005) for more details.

The data we present here originate in Episodes from the discussion of the theme
Formal Mathematical Reasoning 1. students’ perceptions of proof and its necessity.
In these, students’ responses to a Year 1 — Semester 1 question that concerned the
convergence or divergence of sequences and required the use of the quantified
definition of convergence :

The sequence {a,}nen of real numbers converges to a real number L as n —»co if
Ve>0, N in N such that n2N = |a, - L|<&

triggered a discussion of what type of knowledge students draw on when engaged
with proving the convergence of a sequence.

The students had encountered this definition half way through their first semester. In
the Episodes we sample the discussion had revolved around two main issues: why it
is necessary to teach and use the quantified statement for the convergence of a
sequence; and, how formal and informal understanding of the definition of
convergence interact for the production of a correct proof. Issues relating to what
difficulties students encounter in internalising and manipulating this statement were
also touched upon.

Here after discussing a section of the data, we frame our conclusions in Weber and
Alcock’s terms and attempt to explore how the two types of knowledge they
distinguish (semantic and syntactic) coexist in proof production. In particular we
focus on some aspects of the role of syntactic knowledge.

WHY DO WE NEED (AS MATHEMATICIANS AND AS TEACHERS) THE
FORMAL QUANTIFIED STATEMENT FOR THE CONVERGENCE OF A
SEQUENCE?
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The participants agreed on the necessity for the students to learn and understand the
quantified statement. Moreover, they all recognised the need for the students to learn
how to manipulate the quantifiers correctly and how to write meaningful mathematics
sentences (i.e. sentences that comply with formal logical reasoning) using them.
Various reasons were offered for this. Below we elaborate three: symbolic language
as a compensation for shortage of pictorial/geometrical representation (loco-visual);
symbolic language as the shared medium of communication amongst mathematicians
(communicational); and, symbolic language as a tool for manipulating the logic of
mathematical arguments (instrumental).

Lecturer E suggested that quantified statements help defining concepts that are not
particularly amenable to pictorial/geometrical representation:

E: You see ... no human can have a ... good intuitive geometrical or pictorial view
of what the statement “the sequence does not converge” means, for example. [...]
Or say certainly no one can have a geometrical view of the statement “this

S =2

function is not uniformly continuous”. -~

Therefore, the symbolic language of quantifiers fulfils the need to express those
concepts with as little ambiguity as possible and to compensate for the limited
feasibility of pictorial or geometric imagery.

To this reason, Lecturer A adds that symbolic language is the shared language of
mathematics:

A: There is a consensus on what things mean because they are used in context in the
lectures, in the seminars. [...] I mean, meaning is attached to it [...] otherwise it
will be almost impossible to ever write an example sheet again because too much
has to go into it.

So, in order that the students begin to partake in the discourse of university
mathematics as used by the mathematics community and in order for them to be able
to communicate their mathematics to other mathematicians, they need to acquire
dexterity in using mathematical language. Furthermore the participants were keen to
recognise this as a characteristic mainly of pure mathematics: it is in this discipline
mainly that symbols acquire progressively more layers of shared meaning:

E: I think this is a wide problem particularly in pure maths. The process of pure
maths as it proceeds, invests more and more meaning in purer and purer symbols.
[...]1 And, you know, you can literally write down a one-line statement that
would take ten years to explain.

The third main role for symbolic language is more instrumental: symbolic language is
used as a tool for writing proofs and for manipulating formal statements. Lecturer E
offers the example of writing the negation of the definition of convergence (i.e. the
statement 'the sequence does not converge'):
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E: Yes, I guess... the power of symbols is something that they [the students] leam
to manipulate because... to encourage them [fowards] more algorithmic things.
So for example the negation of a quantified statement I think is much easier as a
symbolic definition. Because it is an algorithm: you replace “for all’ with ‘there
exists’, you replace ‘there exists’ with ‘for all’ and then you get a statement and
that is the algorithm.

This is more easily done by using the algorithmic negation, (or negation by rules,
Dubinsky et. al 1988) using directly De Morgan type laws.

This final suggestion points to the importance, in the participating mathematicians’
perception, of possessing syntactic knowledge. As in Weber and Alcock (2004), this
is not meant to be merely procedural dexterity with manipulating strings of symbols,
but also ability to construct sentences that follow the laws of formal logic and to
unpack and use a definition. In the words of Lecturer E:

E: I mean I try in Analysis to convey the idea, if you like, that by definition the last
line of the proof is the definition of something. And that view is not... that
approach is not viewed across their homework. [...] And that itself is a difficult idea
and is one of the things that first year Analysis should be teaching them. And on the
other hand, yes, I mean it is not... of course that is not how we do mathematics and
that is not how they have done mathematics so... it is difficult.

The emphasis that Lecturer E places on the need to acquire syntactic knowledge —
and to learn how to present proof in ways that are acceptable within the mathematics
community — is revealing. While advocating this need he also acknowledges that this
very ordered and established way of presenting mathematics does not represent the
process by which mathematicians do mathematics. He thus emphasises the role of
syntactic knowledge as a tool of mathematical communication (see also Hanna, 2000,
p&) and how syntactic knowledge in proof production serves this role.

IS POSSESSING SYNTACTIC KNOWLEDGE ENOUGH? THE ROLE OF
SEMANTIC KNOWLEDGE

The mathematicians in our study constantly teamed up syntactic fluency (e.g. with
using quantifiers) with what they often referred to as ‘construction of meaning’:

A: This is the definition and that is the meaning, and the meaning [ construct is
equivalent to the definition.

But how does this ‘construction of meaning’ interact with the (formal) definition and
how does this meaning come into being? There is agreement amongst them that this
meaning should be constructed with the help of mental images and verbal
explanations of the definition, and that those are fundamental parts of being able to
work with such statements. Lecturer A refers to his experience as a learner and as a
teacher of mathematics:

A: I find it very difficult to work with statements which have quantifiers [...] So the
only way for myself in which I can unravel such things is that [ have to build up

CERME 5 (2007) 2304



Working Group 14

a mental picture by which I know, ok, ... this is what is going on. [...] So when it
comes to convergence I think that the primary notion for the students 1s asking
that no matter what I specify the & region about the L, from a certain point
onward everything fits inside this box. [...] Unless that is the direct connection
between images that you have and formalisation I think you are lost. If you just
are juggling around ¢ and 6 then it is a completely unworthy process. [...] When
it comes to convergence [fhis] is something that is very private: some people
work like this and some don’t. And I can well imagine that there are students that
can work along a string of quantifiers they just do what they are told. You can
view this as the recipe, you can do this, you do this and you do this...

So, at least for Lecturer A, fluency in syntactic knowledge must come hand in hand
with engagement with the meaning behind the symbols in question, namely an
analogous fluency in semantic knowledge. Furthermore he acknowledges the highly
personal nature of this enterprise and offers the example of how he himself deals with
strings of symbols and with formal logic reasoning: others, he says, may engage in
this process quite differently but for him a simultaneous syntactic and semantic
engagement is absolutely central. |

In other words, for example those of Tall & Vinner’s (1981) Concept Image and
Concept Definition, from these mathematicians’ perspective (and particularly from
Lecturer A’s quote at the beginning of the paragraph) it appears that the conflict
between “meaning” and “definition” (lack of “equivalence™) is a crucial source of
difficulty in proof production (and mathematical understanding more broadly) for
students — as well as for professional mathematicians. Moreover, again framing the
above quotes in Tall & Vinner’s terms, the interplay between Concept Image and
Concept Definition is a highly personal affair, depending on previous mathematical
experiences but also, in the case of professional mathematicians, on their specific
field of expertise.

INTERPLAY BETWEEN SYNTACTIC AND SEMANTIC KNOWLEDGE IN
PROOF PRODUCTION

The participants reflect on the existence of formal definition of a concept and its
informal understanding as follows: in the process of ‘creating meaning for a concept’,
as one of them calls it, the need for drawing upon both semantic and syntactic
knowledge, often simultaneously, emerges. When only one type of knowledge is
used, results are often unsatisfactory. After having discussed students' homework
from the first weeks of the Analysis course, where the students were asked to apply
the formal definition of convergence of a sequence to find out if the given sequence
converged or not, Lecturer D remarks:

D: Again. .. for example that student of mine who said, you know, why... why
does it [applying the formal definition] prove convergence? The impression
I get is that she would end doing it all, all the side calculations and
everything, but she was approaching it because she knew this is what you
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are supposed to do to prove convergence, but she didn’t really understand
why she was doing it, | think.

So, being able to handle and apply, even correctly, the 'formal machinery' (as
Lecturer A calls syntactic knowledge) of the convergence of a sequence is not enough
to claim understanding of it. From the above it appears that this student has acquired
a 'formally operable’ definition of convergence of a sequence (Bills and Tall, 1998) in
that she is able to apply it correctly to a given situation. But she has not yet created
the meaning which grants deeper understanding of the concept of convergence — or
more precisely in what ways this string of symbols that her lecturer refers to as the
definition of convergence relates to her perception of what convergence is — and
which will enable her to apply the same definition in other contexts. With regard to
this point Lecturer A responds to Lecturer D as follows:

A: It is the situation between the formal and the informal, I think. [ mean... unless the
student reaches ever the informal concept I think ... to my mind it should be first
very deeply ingrained in the student. And then it should be a justification in order
to make sure that this is really doing what it ought to do this formal machinery.
And they need to be able to jump from one to the other concept ... and I think this
is also how they find the N [in the definition of convergence see above}. Because,
how do you find the N, how do you pluck it out of the air? You have to have some
informal reasoning, some intuition, draw some pictures, do some side calculations
and then you say oh, maybe given this & the N maybe this.

Just learning the formal machinery is of course devoid of meaning. However also
relying exclusively on this ‘intuition’ and ‘pictures’ is not enough: in fact it can be
misleading What fluency with syntactic knowledge offers here is a shield against
such misguidance, a tool of closer scrutiny through which one can establish that
conclusions can actually be inferred formally and logically:

Interviewer: Can I just ask a question, I mean, it is very close to [...] what you were
wondering about. They [the students] say, to me is pretty obvious that one over n,
you know, the larger the n is the smaller the one over n is... so it goes to zero. And
why do I need to...

A: Why to bother. In fact at that moment you should say ok, this is your informal
understanding, you are expecting something that is correct. But then maybe you
want to say, well, there is an exotic example ... informally you also draw this
conclusion however you are wrong. And so why is that? So that justifies the
formal apparatus to sort out what is right and what is wrong.

Therefore, syntactic and semantic knowledge have both to interact while the learner
is engaging with proof production (whether the leamer is intended here as a student
or as a mathematician producing new results in mathematics). Drawing on only one
of the two jeopardises both construction of meaning and successful proof production.
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DISCUSSION
In sum participants expressed the view that syntactic knowledge

e helps defining and clarifying concepts that escape pictorial representation
without ambiguity

o is the “shared language” of mathematics and as such it acquires a soclo-
cultural dimension: in order for students to enter the mathematical community
and communicate their mathematical findings to others they need to become
fluent in its language

¢ can be an effective tool for proof production
e acts as a checking device for intuition and for semantic knowledge.
While semantic knowledge

e guides syntactic knowledge in proof production and it is of great importance
when there are parts of proofs that require an act of choice on the part of the
prover (in the example of convergence of a sequence, semantic knowledge
guides the choice of N in the definition)

e grants deeper understanding of the mathematical concepts considered
o grants flexibility in applying known concepts to new situations.

In addition to the above what also emerges from the data we presented is that
resorting to one type of knowledge alone in proof production is limiting, even
potentially misguiding and ineffective. In fact, our data seem to point to a cyclic
process based on drawing on syntactic and semantic knowledge in turn and often
simultaneously. Syntactic knowledge is needed both to guarantee unambiguous use of
the definition and as a tool that helps manipulate and produce a formal argument. In
turn, semantic knowledge is needed to guide the syntactic proof production by
drawing on insight into the main properties of the mathematical objects involved.

Semantic knowledge is of great importance, for example, when an act of creativity or
choice is involved in proof production. The example the mathematicians referred to is
how to find an N for a given epsilon when trying to prove the convergence of a
sequence by referring to the formal definition. It may be the case that finding such N
can be done in some cases through applying algorithmic procedures (e.g. solving
backwards |a, - L|<¢ given a particular epsilon). However as the mathematicians
above reported students were often puzzled about where N came from; we believe
that what they were actually reporting there, what is underlying the students’
puzzlement is a certain degree of breakdown between syntactic and semantic
knowledge.

Furthermore when informal understandings seem to lead to inaccurate deductions
syntactic knowledge can re-direct these understandings and shed light on aspects of
the argument not necessarily accessible through intuition. Finally, if we consider the
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need to produce proofs in the format that can be shared amongst mathematicians,
syntactic knowledge functions as a communication tool that serves exactly this
purpose.

CONCLUSIONS

In this paper we have discussed how the mathematicians in our study articulated the
roles of syntactic and semantic knowledge in proof production, and how they
consider their students’ acquisition and use both types of knowledge a priority. While
discussing the interplay between semantic and syntactic knowledge it appears that,
based on their experience as both teachers and learners of mathematics, the
participants believe that both types of knowledge need to concur to produce
successful proofs and that resorting to only one type of knowledge is not enough.
From the data presented above it also emerges that syntactic knowledge has a role
within the mathematical community as a tool of communication. In other words, it
represents the genre speech of this community. Here we use the term genre speech in
the sense of Bakhtin (1986) and as explored further by Van Oers (2002):

The genre is primarily a social tool of a sign community for organising a discourse in
advance and often even unwittingly. It is a style of speaking embodied in a community's
cultural inheritance, which is passed to members of that community in the same way as
grammar 1s passed on. (p69)

Therefore syntactic knowledge contributes to mathematics as a social activity by
becoming its genre speech, the common language that everyone in the community
understands and uses for exchanging ideas and results. We concur with Otte (1990)
who emphasises this social role of syntactic knowledge when he writes about proof
presentation (referring to how proofs appear in mathematical publications, largely as
chains of symbols that convey the logical deductions underlying formal mathematical
reasoning):

It is in this way that proofs are both mechanical procedures and social processes.
...although intuition is commonly worshipped in contrast to proof as the highest form of
knowing, this attitude is in danger of depriving man of his social nature and thereby of
his character as a human subject. (p62)
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