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INTRODUCTION

. This chapter deals with research carried out on math-

ematics thinking and learning at post-secondary level.

t'tries to point out the evolution of research in this

- area since the first Handbook was published in 1992,

its most important advances, their potential and limit

for understanding and improving teaching and learn-
ing processes at this advanced level.

Synthesizing research advances in a particular
area of mathematics education has always been diffi-
cult, due to the diversity of educational structures and
cultures, and to the diversity of research paradigms.
Regarding postsecondary education, the exercise of
looking back 10 years could nevertheless seem easier
than in other domains of mathematics education.
Thanks to the existence of the International Group
for the Psychology of Mathematics Education (PME),
and its annual conferences, researchers from differ-

ent origins reflecting on these issues established a
pattern of regular exchanges and collaborative work.
In 1991 this work led to the book edited by Tall: Ad-
vanced Mathematical Thinking, a good representation
of the state of the art’ at that time. Both the structure
and the content of this book show that the predomi-
nant concerns then were cognitive ones: identifying
cognitive processes underlying the learning of math-
ematics at advanced levels, investigating the relation-
ships of these processes with respect to those at play
at more elementary levels, and understanding stu-
dents’ difficulties with advanced mathematical con-
cepts. Different theoretical constructs supported this
research, such as the notions of concept definition and
concept image (Tall & Vinner, 1981), the process-object
duality (Dubinsky, 1991; Sfard, 1991), or the notion
of epistemological obstacle due to Bachelard and devel-
oped in the didactic field by Brousseau (Brousseau,
1983). However, the book shows an evident common
interest in visions of knowledge growth focusing on

! There were some significant exceptions: For instance, research carried out in this group did not consider the stochastic domain.
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misunderstandings, cognitive conflicts, discontinui-
ties, and hierarchies. Moreover, the research tended
to concentrate on just a few mathematical domains:
calculus and associated concepts, mathematical ra-
tionality, and proof. This vision, unsurprisingly, is re-
flected in the chapter that refers most directly to post-
secondary level mathematics in the 1992 Handbook,
“The Transition to Advanced Mathematical Thinking:
Functions, Limits, Infinity, and Proof” (Tall, 1992).

The situation today is far from being the same, for
a lot of reasons, linked both to the internal evolution
of mathematics education as a scientific field and to
external changes affecting postsecondary education.
Research at post-secondary level was firstly influenced
by the evolution of the dominant research paradigms
from constructivist cognition and cognitive develop-
ment towards sociocultural and anthropological ones
(Lerman & Sierpinska, 1996). Sociocultural and an-
thropological paradigms were considered in the 1992
Handbook—see for instance chapter 20 by Schoenfeld
who writes, “This cultural perspective is well ground-
ed anthropologically but it is relatively new to the
mathematics education literature” (p. 340). From that
time, sociocultural and anthropological approaches
have taken an increasing importance, and references
to Vygotsky have tended to supplant those to Piaget.
Research on mathematical learning at post-secondary
level could neither escape this general influence nor
ignore the central role these approaches give to the
analysis of social and institutional practices in the un-
derstanding of knowledge growth. Research was also
influenced by the emphasis these approaches put on
semiotic mediations, and thus on the semiotic tools
of mathematical activity. One can easily understand
that such an evolution has a particular resonance in
research on advauced topics: in advanced mathemat-
ics, students’ relationship with symbolism becomes an
essential feature of their relationship with mathemat-
ics. More recently, research has also been influenced
by the increasing interest in the neuroscientific study
of cognition and embodied cognition.

At the same tme as these internal changes, the
field was affected by a number of external changes,
which have been analysed in the ICMI Study on the
Teaching and Learning of Mathematics at University
Level (Holton, 2001). For example, the following quo-
tation comes from the ICMI discussion document that
launched this Study and explained its rationale®:

A number of changes have taken place in recent
years which have profoundly affected the teaching of

mathematics at university level. Five changes which
are still having considerable influences are (i} the
increase in the number of students who are now at-
tending tertiary institutions; (ii) major pedagogical
and curriculum changes that have taken place at
pre-university level; (iii) the increasing differences
between secondary and tertiary mathematics edu-
cation regarding the purposes, goals, teaching ap-
proaches and methods; (iv) the rapid development
of technology; and (v) demands on universities to be
publicly accountable. Of course, all of these changes
are general and have had their influence on other
disciplines. However, because of its pivotal position
in education generally, and its compulsory nature for
many students, it could be argued that these changes
have had a greater influence on mathematics than
perhaps on any other discipline. . . . As a result of the
changing world scene, ICMI feels that there is a need
to examine both the current and future states of the
teaching and learning of mathematics at university
level. The primary aim of this ICMI Study is there-
fore to pave the way for improvements in the teach-
ing and learning of mathematics at university level
for all students. (ICMI, 1997).

All these evolutions have contributed to make the
field of research on mathematics thinking and learn-
ing in post-secondary education much more diverse
today than was the case 10 years ago. Consequently,
trying to present a systematic survey of the results ob-
tained in the last 10 years and of the different exist-
ing trends could result in a pointillist painting whose

driving forces would remain invisible to the reader.

Trying to avoid this trap while taking into account the
state of the field obliged us to make some choices,
and we acknowledge that the vision we present is a
personal vision. Qur main choice has been to reflect
and question some major evolutions we perceive in
the field rather than to give a comprehensive view of
it. We also decided to approach these evolutions in
two different ways: on the one hand by showing how
classical research topics such as calculus or linear al-
gebra have been partially renewed in the last 10 years
and on the other hand by addressing two emerging
research themes: mathematics in engineering cours-
es, and stochastics.

Because this Handbook has no chapter devoted to
technology, we would additionally like to present our
own reflections on technology in this chapter. Con-
sistent with' the spirit of the Handbook, our choice is
not to have a specific section dealing with technology,
but rather to integrate the discussion of technology
throughout the chapter.

# This discussion document was disseminated through different channels and ¢an be found in the [CMI Bulletin number 43 (December
1997) which is accessible on the 1CMI website {www.mathunion.org/Organization/ICMI).
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The chapter is structured into four main parts. In
the first part, we briefly recall the state of the art in the
early nineties. In the second part, we consider evolu-
tions that, in our opinion, exemplify how the internal
““gvolution of the theoretical frames in mathematics
. education has influenced and is influencing research
at postsecondary level. For this purpose, we mainly
consider research in traditional domains such as cal-
culus and linear algebra. In the third part, we consid-
““er evolutions more linked to external factors such as
the evolution of the context of postsecondary math-
ematics education in its institutional, social, cultural,
. and technological dimensions and the evolution in
. the relative importance of the different mathematical

domains. For this part, which did not have its exact
“counterpart in the previous Handbook, we focus on re-
. search carried out about the teaching and learning
‘of mathematics in engineering courses, and research
“on probability and statistical learning. We hope that
this choice helps us question titeoties arnd positions as
egard mathematical learning and thinking that have
:generally been established having in mind more or
less explicitly the mathematical education of “pure
‘mathematicians” or mathematics teachers and their
_particular needs, and also that have focused on few
ind classical mathematical domains. This choice also
bliges us to consider the role of technology in learn-
Ang in a rather different way. Indeed, what is often at
‘stake in these domains is not simply the use of technol-
- ogy for developing usual mathematical knowledge but
the way in which technology is changing mathematical
-activity and understanding, including problem solv-
ing, proving, reasoning, modeling, and symbolizing.
‘Mathematical and technological expertise and needs
are there much more tightly intertwined.

Finally, in the last part of the chapter, we come
-back to more general issues, pointing out both the po-
‘tentia} and limits of existing research for understand-
ing and for helping improve the current situation of

thinking and learning at post-secondary level, point-
ing out also some evident research needs that are ap-
parent from the literature reviewed in the chapter.

THE EARLY NINETIES

As was mentioned in the introduction, the state of
research on mathematical thinking and learning at
postsecondary level in the early nineties is rather
well represented in the book Advanced Mathematical

Thinking published in 1991. A main theme of inter- ‘

est for researchers, at that time, was to characterize
advanced mathematical thinking (AMT in the fol-
lowing) with respect to more elementary forms of
mathematical thinking. It was also to clarify the men-
tal processes that allow students to enter into AMT,
and the difficulties students meet in developing such
mental processes.

The Nature of AMT and AMT Processes

As pointed out by Dreyfus (1991) in his contribu-
tion to the book, characterizing AMT is not something
as easy as “there is no sharp distinction between many
of the processes of elementary and advanced math-
ematical thinking” (p. 26). As with more elementary
levels, according to Dreyfus, the processes of AMT
can be described in terms of representing, visualiz-
ing, generalizing, classifying, conjecturing, inducing,

Referring to famous texts by Hadamard (1945) and‘

Poincaré (1913), Dreyfus also pointed out the diversi-
ty of mathematical thinking modes, but differentiated
essentially two main mathematical styles, according to
the relative importance given to visualization and in-
tuition, or to symbolic and analytic approaches.

Beyond these general considerations about AMT,
the crucial point, as stressed by Tall in the final chap-
ter of the book, was certainly the acknowledgement
of the “thorny nature of the full path of mathemati-
cal thinking, so much more demanding and reward-
ing than the undoubted aesthetic beauty of the final
edifice of formal definition, theorem and proof” (p.
251). For the authors, the gap between the logic of
the mathematical edifice and the logic of cognitive
processes explained the observed inefficiency of uni-
versity teaching strategies based on the former, for the
majority of students. This was evidenced at the time
by the high rates of failure in fundamental courses,
such as calculus, and also by the limited ability dem-
onstrated later by those students who had passed the
fundamental courses. The study of Selden, Mason,
and Selden (1989) is from this point of view especially
illustrative. These researchers presented students with
problems® that could easily be solved with the tech-
niques at their disposal but were not presented in the
usual way. Not one student solved an entire problem
correctly, and most of them could not do anything.

The gap mentioned above has been the motivation
for several theoretical constructs, and we briefly pres-
ent the most irnportant ones in the following section.

* One of these problems was the following: Find at least one solution to the equation 4x”— x* = 0 or explain why no such solution exists.
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Concept Definition and Concept Image

These notions were introduced by Tall and Vin-
ner {1981) and defined in the following way:

We shall use the term of concept image to describe
the total cognitive structure that is associated with the
concept, which includes all the mental pictures and
associated properties and processes. It is built over the
years through experiences of all kinds, changing as
the individual meets new stimuli and matures. . .. As
the concept image develops it need not be coherent
at all times, The brain does not work that way. Sensory
input excites certain neurenal pathways and inhibits
others. In this way different stimuli can activate differ-
ent parts of the concept image, developing them in a
way which need not make a coherent whole. (p. 152)

One example of this lack of global coherence, of-
ten quoted in the literature, is the following: Students
are asked first to compare 0.999. . . and 1, then to cal-
culate the sum of the series: £9/10". Many students
answer that 0.999. .. < 1 to the first question whereas
they correctly answer that the sum is 1 to the second.
Several reasons have been given for explaining the
first answer. They often rely on the process/object du-
ality we will evoke later on: Students are bound to a
process view of the symbolic notation 0.999. .., and
this view prevents them from seeing beyond the in-
finite process whose terms are all less than 1, the ob-
ject “number 1” that results from it.* When asked the
second question, they recognize a geometric series,
and activating the formula for its sum they get the cor-
rect answer. Notice that this answer generally does not
lead students to reconsider their answer to the first
question, which is seen as a different one.

The concept image is generally at variance with
the concept definition, and this was well evidenced at
that time by research carried out on functions. Con-
vergent results showed that many students, even when
able to give a correct set-based definition of the notion
of function, when asked to say if such or such object
given by a discursive, tabular, symbolic, or graphic rep-
resentation was or was not a function, gave answers at
variance with their definition, and answers that could
be different for the same object according to the semi-
otic representation used.’

Epistemological Obstacles

As mentioned in the introduction, other 5
proaches had been developed in the eighties in order
to approach the complexity of learning processes at
postsecondary level and the distance between these
and the current logical organization of mathematica]
knowledge. One of these approaches, also well rep-
resented in the AMT book, relied on the notion of
epistemological obstacle, initially due to the philoso-
pher Bachelard, and imported by Brousseau into the
educational field. According to Bachelard (1938), scj-
entific knowledge supposes the rejection of common
knowledge. In the educational field, this notion has
been introduced in order to better understand the sta-
tus of students’ errors and to acknowledge that some
of these, generally the most resistant ones, result not
from a lack of knowledge but from knowledge that
has stabilized because of its efficiency. Let us stress
that this knowledge can be social or cultural but that
it can also result from school apprenticeship. Some re-
searchers working at post-secondary level soon appro-
priated this notion in order to understand students’
difficulties with advanced mathematical concepts
such as the concepts of limit, derivative, and integral.
Regarding the limit concept for instance, Cornu and
Sierpinska first (Cornu, 1983, 1991; Sierpinska, 1985,
1987) and then Schneider (1991) evidenced the exis-
tence of epistemological obstacles related to

The everyday meaning of the word limit, which in-
duces resistant conceptions of the limit as a barrier or
as the last term of a process, or tend to restrict conver-
gence to monotonic convergence;

The overgeneralization of properties of finite pro-
cesses to infinite processes, following the continuity
principle stated by Leibniz;

The strength of a geometry of forms which prevents
students from clearly identifying the ohbjects involved
in the limit process and their underlying topology. This
makes it difficult for students to appreciate the subtle
interaction between the numerical and geometrical
settings in the limit process. {Artigue, 2001, p. 211}

Overgeneralization leads for instance to a belief
that the limit of a sequence of strictly positive numbers is
strictly positive, or that the limit of a sequence of continu-
ous (resp. differentiable, integrable) functions is contin-

1 Edwards (1997) proposed for instance an alternative interpretation based on the difference regularly observed in the treatment of the
two equalities : 0.833. .. = 1/3 and 0.999. . . = L. This would show that, when manipulating infinite decimal expansions, students do not
refer to the definition they have been given but to their practice of division. This practice supports the first equality but cannot make

.sense of the second one.

" For instance, recognizing a constant function as a function if given by a graphical representaton but refusing it this status if given by an

algebraic expression without an explicit variable.
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uous (resp. differentiable, integrable). The geometrical
obstacle leads to a belief that whenever a sequence (F)
of geometrical objects has, as a limit, an object 4, all the
magnitudes attached to the F, have as a limit the corre-
sponding magnitudes for A. As shown by Schneider, this
geometrical obstacle often combines with an obstacle
she labels the kelerogeneity of dimensions obstacle, which un-
derlies for instance the following reasoning concerning
the computation of the area under a curve: When the
size of the subdivision tends towards 0, each of the rect-
angies tends towards a segment. Thus at the limit, the
total area under the curve which is the sum of the areas
of the segments is necessarily 0, which is impossible!®

Process/Object Duality

Another approach, which was to take increasing
importance in the research commmunity, was also already
present: that based on the process-object duality. In the
early nineties, this approach was associated with some
particular names, especially those of Sfard and Dubinsky.
In the AMT book, it was especially visible in the chapter
. vritten by Dubinsky where he introduced APOS theory.
According to APOS, conceptualization begins with ma-
nipulating previously constructed mental or physical ob-
jects to form actions, actions are then interiorized to form
Processes that are then encapsulated to form objects. Final-
- ly, actions, processes and objects are organized more or
less coherently in schemas, and “a subject’s tendency to
invoke a schema in order to understand, deal with, or-
ganize, or make sense out of a perceived problem situa-
tion is her or his knowledge of an individual concept in
mathematics” (Dubinsky, 1991, p. 102).

" Dubinsky’s ambition was to isolate small portions
in the complex structures of a subject’s schemas and
to give an explicit description of these, and especially
to-develop genetic decompositions of particular con-
cepts such as induction and function, two examples he
presented in the same chapter. What was also stressed
by Dubinsky is the fact that a learner cannot success-
fully engage in AMT without developing an object
view of the mathematical ideas at stake.

The 1992 Handbook

As mentioned earlier, Tall’s chapter of the Hand-
book closely reflects the AMT book. Tall introduced the
" different constructs mentioned above together with il-
- lustrative examples, and we just refer here to the con-

clusion of the chapter where he gave his own character-
ization of AMT and proposed an agenda for research.
As regards AMT, the crucial point, according to him,
is the change in the relationship one develops with
mathematical concepts: “To move to more advanced
mathematical thinking involves a difficult transition,
from a paosition where concepts have an intuitive basis
founded on experience, to one where they are speci-
fied by formal definitions and their properties recon-
structed through logical deductions” (p. 495), but he
also stressed that “In taking students to the transition
to advanced mathermatical thinking, we should realize
that the formalizing and systematizing is the final stage
of mathematical thinking, not the total activity.”
According to him, research has thus to investigate
and understand the difficult cognitive changes and re-
structurings that this transition involves. Research evi-
dences the existence of conflicts between students’ in-
tuitive views and formal mathematics; these have to be
clarified through clinical interviews, and at the same
time formal mathematics has to be itself placed into
perspective as a human activity that attempts to orga-
nize the complexities of human thought into a logical
system. This is the research agenda he proposed.

Beyond the work done under the AMT umbrella,
post-secondary research is also present in the first Hand-
book through Schoenfeld’s chapter “Learning to Think
Mathematically: Problem Solving, Metacognition and
Sense Making in Mathematics”. Synthesizing different
approaches to these issues coming from mathematics
education and related fields, and the personal work he
has carried out in universities on problem solving, re-
porting on differences between students’ and experts’.
problem-solving behaviors, Schoenfeld introduced a
framework for the analysis of mathematical cognition.
This framework is organized around five dimensions:
the knowledge base, problem-solving strategies, moni-
toring and control, beliefs and affects, practices. We
would like to stress here the attention paid by Schoen-
feld to the role played by the two last categories: be-
liefs and practices, and the links he establishes between
these, as this attention shows the emergence of the
more global and cultural views on cognition whose in-
fluence was to increase in the next decade.

Taking into account the specific theme of this
chapter, we have focused in this brief summary on re-
search on learning processes and mathematical think-
ing. Nevertheless we would like to mention that in the
early nineties research on post-secondary mathemat-

® Note that recently Gonzalez-Martin and Camacho (2004) evidenced the existence in university students of a variant of this obstacle, when
working on students’ conceptions of generalized integrals. It is expressed in the conviction held by students that, for a positive function
the integrals I "f(x)dx and L7 2(x)dx have necessarily the same nature because to a finite area (resp. infinite area) there necessarily
corresponds by rotation around an axis (here Ox) a finite volume (resp. infinite volume).
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ics education was not restricted to this aspect. Teach-
ing experiments were also developed consistent with
these perspectives on learning. For instance, Tall used
the notion of generic organizer’ to build the software
Graphic Calculus for introducing students to calcu-
lus concepts; Dubinsky and his colleagues developed
the language ISETL and began to use it for teaching

functions and algebraic structures; French research-

ers such as Artigue, Legrand, and Rogalski used the
theory of didactic situations and the notion of scientif-
ic debate to develop (jointly with physicists) “didactic
engineering” for the teaching of differentation, in-
tegration, and differential equations (Artigue, 1991).
Many of these developments incorporated technology
as a generic organizer, as support for visualization and
coordination between semiotic registers, or involved a
programming language to support the interiorization
and encapsulation of processes.

Thus, if we consider the field of research on
mathematics learning at postsecondary level at the
beginning of the nineties, there is no doubt that dif-
ferent theoretical constructs had been elaborated and
worked out. These structured the didactic reflections
of researchers about students’ learning processes and
difficulties, allowing researchers to better understand
the failure of ordinary educational practices for the
majority of students, to design alternatives to these
and to test them. Nevertheless, the results obtained
were limited to small areas of postsecondary educa-
tion, both in terms of categories of students and math-
ematical subjects; the theoretical constructs were not
generally integrated into more global didactic struc-
tures connecting both learning and teaching phenom-
ena; they remained essentially cognitive constructs
and, within this cognitive perspective, relied on the
dominant constructivist epistemology. Both the evolu-
tion of the field and the evolution of the educational
context have produced changes to this situation, and
these we present and discuss in the following parts.

EVOLUTIONS DEALING WITH ALREADY-
DEVELOPED RESEARCH AREAS
AND PERSPECTIVES

In this part we present and discuss evolutions, focus-
ing on those that can be easily connected to research
areas and perspectives already mentioned above. First
we consider the evolution of ideas about AMT itself.

Second we consider the reinforcement and extension
of existing approaches. We discuss the evolution of
the process-object oriented approaches through the
development of APOS theory, and the development of
the proceptual approach. We also consider approach-
es that, starting from epistemological and/or histori- -
cal analysis of mathematical knowledge, propose al-
ternative categorizations for approaching the analyses
of conceptualization. Third, we discuss the impact of
some newer cognitive approaches, focusing mainly
on the increasing influence of embodied cognition
and of the linguistic approach developed by Lakoff
and Nuiez. Fourth, we come to another dimension
of the evolution that we see as a consequence of the
increasing influence of anthropological and sociocul-
tural approaches in the educational field. Cognition is
there seen as something emerging from institutional
practices, and understanding learning processes can-
not be achieved without analyzing these institutional
practices and identifying the norms and values under-
lying them. We show how these approaches comple-
ment the preceding ones for understanding the in-
teraction between the individual and the collective
in learning processes and supporting didactic design,
and also for understanding issues that have become
more and more crucial, such as the secondary/ tertiary
transition, or the relationships that new generations
of students develop regarding mathematics and math-
ematical activity, and how these affect their learning
of mathematics.

Evolution of Ideas About the Nature
of Advanced Mathematical Thinking

The publication of the AMT book did not close the
discussion about the nature of advanced mathematical
thinking and its development. Critical reviews argued
about what was referred to by the term advanced in the
AMT book: mathematics? thinking? both? This was
unclear, and the criteria used in the distinction be-
tween elementary and advanced mathematical think-
ing were not really convincing, according to the crit-
ics. From that time, the definition of AMT has been a
question regularly addressed but unresolved. In the
following, we have chosen to illustrate some of the as-
sociated discussions by referring to the work carried
out since 1998 by a working group of PME-NA titled
“The Role of Advanced Mathematical Thinking in
Mathematics Education Reform” and the special issue
of the journal Mathematical Thinking and Learning that

7 Tall {1991} defined a generic organizer as “an emvironment that provides the user the facilities of manipulating examples (and, whert
possible, non-examples) of a concept. The word ‘generic’ means that the learner’s attention is directed to certain aspects of the examples

which embody the more abstract concept” {p. 187).
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recently emerged from this work (Selden & Selden, '

2005). As the editors explained in the introduction to
this special issue, the working group “began by discuss-
ing such questions as what kinds of earlier experiences
might help students make the transition to the kinds
of AMT that post-secondary students are often asked
to engage” and iis interest “rather naturally metamor-
phosed into efforts at characterizing AMT and look-
ing for seeds thereof that are, or could be, planted
early in students’ mathematical careers” {p. 3). The
special issue evidenced the diversity of the answers of-
 fered within the group. For instance, starting from the
fact that manipulating advanced concepts such as the
concept of limit does not necessarily require advanced
modes of thinking, and that students have difficulty
finding referents for these abstract mathematical con-
cepts in their familiar world, Edwards, Dubinsky, and
McDonald defined AMT in the following way: AMT
is “thinking that requires deductive and rigorous rea-
soning about mathematical notions that are not en-
tirely accessible to us through our five senses” (2005,
pp- 17-18). Harel and Sowder, for their part, defined
AMT by referring to the notion of epistemological ob-
stacle. Considering the three conditions imposed by
Duroux and Brousseau (Brousseau, 1997) for episte-
mological obstacles: (a} to have traces in the history of
mathematics; (b) to be a piece of knowledge produc-
ing valid answers in particular contexts, and invalid
responses outside this context; (c¢) to “withstand both
occasional contradictions and the establishment of a
better piece of knowledge” (p. 34). Harel and Sowder
claimed that “mathematical thinking is advanced, if its
development involves at least one of the above three
conditions” (2005, pp. 17-18).
These five authors proposed various examples in
order to show the pertinence of the perspectives they
. d"év'eloped but these examples, in spite of their inter-
est, are insufficient to make the proposed definitions
fully convincing. For instance, the first definition re-
lies on the claim that some mathematical objects are
directly accessible to our senses, an assertion that can
be seriously discussed from an epistemological point
of view. This definition also opposes rigorous and de-
ductive reasoning to automatic reasoning or routine,
which does not pay attention to the fact that most rea-
soning processes subtly intertwine routine and rigor
ous reflection. The separation between what is routine
and what needs reflection changes for each learner
according to the development of the learning process

# Research in Undergraduate Mathematics Education Community,
? We have chosen to focus on these two examples because they nicely illustrate what can be the long-term development of approaches
based on the process-ohject duality, as far as these are widely used. A similar analysis could have been carried out starting from she theory
of reification initiated by Sfard.

and even the academic institution where the learning
takes place. Thus the operationality of this definition
is questionable. As regard the second definition, the
separation it artificially introduces between the three
complementary conditions imposed by Duroux on
the notion of epistemological obstacle, and the fact
that these three conditions are given an equivalent

role for qualifying AMT, seems difficult to sustain.

More than the attempts at defining AMT, which
we do not consider as really successful, what we take
from this special issue is the hypothesis made by most
of the contributors, and especially Rasmussen, Zan-
dieh, King, and Teppo, that AMT is not specific to a
particular level of schooling. As these authors did, we -
would prefer to speak of advanced mathematical prac-
tices. Underestimating the relative nature of these,
their dependence on institutional context, and link-
ing them too much to formal mathematics can turn
an idea that is a priori pertinent for analyzing learn-
ing processes into an obstacle. Qur ambition in this
chapter is to investigate how research carried out up
to now at post-secondary level helps us to understand
the ways students learn or do not learn, and could bet-
ter learn mathematics, in the diversity of existing post-
secondary institutions, without establishing a priori
hierarchies of values among the different mathemat-
ics cultures these institutions offer. We need thus to be
sensitive to the implicit values carried by the research
constructs we use, and our review of AMT research
leads us to be very critical in this regard about the con-
struct of advanced mathematical thinking.

The Reinforcement and Development
of Existing Approaches

Process—Object Duality

Expanding on the idea of process/object dual-
ity introduced above, we would like to focus on two
trends: {a) the development of the APOS theory
whose influence in research at post-secondary level
has strongly increased in the last 10 years, thanks to
the collaborative work of several groups of researchers
and the existence of institutions such as RUMEC,® and
(b) the development of the proceptual approach.?

The fundamental base of APOS remains the same
as what was extensively presented by Dubinsky (1991).
But, since that time, this approach has been used
for building genetic decompositions of many differ-
ent concepts taught at university level, for extending




1018 M STUDENTS AND LEARNING

research based on APOS towards secondary math-
ematics education, and for elaborating and testing
teaching designs based on the theory. APOS theory
is a cognitive theory, and this obliges researchers to
rely for teaching design on educational approaches
complementing what APOS can offer. Thus the idea
of cooperative learning has been linked to APOS,

leading to a number of different projects (Dubinsky'

& Schwingendorf, 1997).

The fundamental basis of APOS has not changed,
but one evolution is worth mentioning. It resulted
from difficulties met by the researchers in satisfactori-
ly explaining all the data they had collected. What was
mainly at stake was the schema part of APOS. Accord-
ing to APOS (Dubinsky & McDonald, 2001, p. 277),

a schema for a certain mathematical concept is an
individual’s collection of actions, processes, objects
and other schemas which are linked by some general
principles to form a framework in the individual's
mind that may be brought to bear upon 2 problem
situation involying that concept. This framework must
be coherent in the sense that it gives, explicitly or im-
plicitly, means of determining which phenomena are
in the scope of the schema and which are not.

Data obtained in research concerning the chain
rule, and then the properties linking the graph of a
function and its derivatives, led to a reconsideration
of this idea of schema, and to the incorporation of the
triad introduced by Piaget and Garcia (1989) in order
to better explain the construction of schemas. Incor-
porating the triad led to the introduction of three dif-
ferent stages in the construction: the Intra, Inter, and
Trans stages. As explained in Dubinsky and McDonald
(2001, p. 280},

The Intra stage of schema development is charac-
terized by a focus on individual actions, processes,
and objects in isolation of other cognitive items of
a similar nature. . .. The Inter stage is characterized
by the construction of relationships and transforma-
tions among these cognitive entities. . . . Finally, at the
Trans stage the individual constructs an implicit or
explicit underlying structure through which the refa-
tionships developed in the Inter stage are understood
and which gives the schema a coherence by which
the individual can decide what is in the scope of the
schema and what is not.

Taking as an example the function concept, one

could say that at the Intra level, an individual tends to
focus on functions seen as isolated objects and on the
activities they perform on these; at the Inter level, he
or she begins to make connections between function-
al objects, and to see how new functional objects can

be created through these connections, to give senSe.t-cl,'
the idea of transformation of functional objects; at the
Trans level, he or she can consider systems of transfor.
mations and the mathematical structures that emerge
from these.

The second trend in process-object duahty we
evoke here is that developed by Tall. According to
APOS, mathematical learning is achieved through the
construction of mental actions, processes and objects,
and their organization into schemas. Over the years,
the distance between Tall's vision and APOS has pro-
gressively increased, and the model he proposes today
is something quite different. According to him, cogni-
tive growth of mathematical knowledge presents three
main different paths corresponding to three different
mathematical worlds (Tall, 2004):

The first grows out of our perceptions of the world
and consists of our thinking about things that we per-
ceive and sense, not only in the physical world, but in
our own mental world of meaning. By reflection and
by the use of increasingly sophisticated language, we '
can focus on aspects of our sensory experience that
enable us to envisage conceptions that no longer exist
in the world outside, such as a “line” that is “perfectly
straight.” (p. 285)

This first world, which Tall names the embodied
world, applies to the developmental path of Euclidean
geometry from our perception of spaces and forms.
The second path leads from enactive experiences with
quantity and change to numbers, algebra, and calcu-
lus. Actions are there “encapsulated as concepts by us-
ing symbols that allow us to switch effortlessly from
processes to do mathematics to concepts to think
about” (p. 285), and Tall names the associated math-
ematical world the procept world. The third world is the
formal werld. Objects are there expressed in terms of
formal definitions, and their properties deduced by
formal proofs. They belong to mathematical struc-
tures defined through axiomatic systems. Geometry
becomes axiomatic geometry; calcutus becomes for-
mal Analysis. Tall (2001) identified two different ways
for the cognitive development of this formal world:
natural thinking, which builds from concept imag-
ery towards formalism on the one hand, and formal
thinking, which builds from the concept definition,
marginalizing imagery and focusing on logical deduc-
tion. According to him, individuals generally, accord-
ing to the context, use one or the other way: “Natural
thinking is appropriate for thought experiments that
suggest possible theorems; formal thinking is appro-
priate for establishing formal proofs” (p. 235). But he
also stressed that “formal thinking may also lead ©
‘structure theorems,” whose properties may be used
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to develop more subtle visual imagery, now enhanced
by the network of formal relationships” (p. 235). Such
distinctions are illustrated (Tall, 2001) using examples
based on real numbers and infinitesimals. One can
understand for instance the transitive property of the
real order by relying on the image of the number line;
and one can understand it as a consequence of the ex-
istence of a subset of positive elements P in a field sat-
isfying the following axioms that make it an ordered
field for the relation x < yif y— x belongs to P:

1) if xand ybelong to P, x + yand xy belong also
to P,

2) Any xin the field satisfies one and only one of
these properties: x belongs to P, —x belongs to
P, x=0.

These two modes of understanding the same property
formally expressed are obviously different.

In Tall's approach, relationships between pro-
cesses and objects are seen in a much more dialectical
way than in APOS, and symbolism contributes in an
essential way to this dialectic through the notion of
procept. This notion, first introduced by Gray and Tall
© {1994), expresses the fact that the same symbol can
evoke both a process and the concept (i.e., object for
~ Dubinsky) produced by this process; hence the name
~ pro=cept, the condensation of process and concept. Ac-
- cording to Tall (1996), “Function, derivative, integral
~and the fundamental limit notion are all examples of

procepts. The theory of functions and Calculus can be
summarized in outline as the study of the “doing” and
‘undoing’ of the processes involved” (p. 293).
Learning in this viewpoint means developing a
~ flexible proceptual view. What this exactly coversis not
something uniform, and Tall distinguishes between
—three categories of procepts according to their opera-
tional characteristics. Procepts in elementary arithme-
“ tic give direct access to the object they represent: The
procept “4 + 8” represents both the process of adding
“'the number 4 and the number 8, and the number 12
-that results from this addition. Algebra is the domain
of template processes: “2x + 3" can be seen as a process
and as an object that I can for instance substitute for y

-in a procept such as “2y% — 1”. As a process, it is not di-

rectly workable: it only tells how to get a numerical val-
‘ue each time a numerical value is given to x; hence the
TName template process. Procepts involved in calculus
‘are generally of a third nature as they are associated
't0 symbolizations that do not have the same algorith-
_mic power, even if they can support some operational

work, as for instance change of variables in definite
integrals. Interpreting the symbol Z1/#% both as a
symbol for a process and as a concept does not give
means for practically operating with it, and for solving
the mathematical problems that can be attached to it.
In fact, developing a flexible ability for doing and un-
doing the processes involved in elementary calculus
is certainly a rather complex and long-term construc-
tion not only dependent on the development of sym-
bolic techniques and abilities. Tall insists in his most
recent work on the role that can be played by enactive
experiences and visualization, as mentioned above.
The fact that enactive experiences can help students
and even young students develop an intuitive sense
of calculus concepts such as those of velocity and ac-
celeration has been evidenced by different research-
ers for a long time (see for instance Kaput, 1992}. As
regards visualization, the software Graphic Calculus,
developed by Tall in the 1980s (Tall, 1986), has pro-
vided a paradigmatic example ever since of what can
be achieved for developing a first approach to calcu-
lus concepts without relying on formal definitions and
proofs. It exploits the fact that fundamental notions
in calculus such as those of continuity and derivative
can be expressed in terms of local constancy and local
straightness, and that the characteristics of computer
visualization make it possible to “access” local prop-
erties through a finite number of zooms, and to “es-
cape” in some sense the underlying limit process.’® By
working on these visual representations, one can thus
explore the properties of mathematical objects that in
fact result from an infinite limit process. Connections
can be made with symbolic representations, and the
interaction between these two different semiotic regis-
ters of representation can be used to support concep-
tualization and the development of procepts.

A major point of interest when thinking about
postsecondary mathematics learning is obviously the
transition towards formal thinking. Tall has often in-
sisted on the radical change in perspective that this
transition requires, and on its difficulty. According
to him, only a few students truly enter this world but
what is important to stress, and we will have the op-
portunity to come back to this point later on in the
chapter, is that a lot can be achieved through mathe-
matical work in the first two worlds mentioned above,
the embodied and the proceptual.

We have summarized above some evolutions of
approaches that, in the beginning, focused on the
process/object distinction. The distinction between
process and object levels of conceptualization is in-

p N - . N - . . o .
" A comparison can be made here with research in stochastics in which simulations serve to create “microworlds” to explore abstracts
concepts, siich as sampling distributions or stochastic processes.
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teresting for postsecondary learning because what
students are asked to learn in university courses of-
ten requires an object level, whereas what they have
learnt previously, even if they have developed some fa-
miliarity with the notions, does not ensure this object
level, except for some limited set of instances in the
best cases. In APQOS, this initial distinction remaiped
the core of the theory. It aims at representing some
vertical organization of knowledge whereas the notion
of schema takes care of the horizontal organization and
of the underlying interconnections. But starting from
the principle that any form of conceptualization obeys
this pattern or, said in another way, that through the
process/object duality we approach the epistemologi-
cal core of knowledge growth in any mathematical
domain is a very strong hypothesis that is open to dis-
cussion. We will have the opportunity to come back
to this point in the last two parts of this chapter. In
the research literature morecver, more evidence is
emerging that establishing connections plays a funda-
mental role in knowledge development. In APOS, this
dimension is accounted for by the schema (S) part of
the model. But this part remains rather undeveloped
compared with the APO parts. In our opinion, it is
not by chance that researchers met problems with
this schema part, which they tried to solve through
incorporating the triad of Piaget and Garcia. A new
hierarchy has been introduced, but the fundamental
problem of the “extension of the concepts” cannot
be solved just by introducing a new hierarchy. A fun-
damental question seems indeed to us the following:
What does it mean to have built the concept of func-
tion as an object? What does it exactly mean to have an
Inter, Intra, or Trans level of the function schema for
students, and even for experienced mathematicians?
Can we researchers give answers that are independent
of the kind of functional objects we deal with, on the
kind of operations we are asked to perform on these,
on the kind of structures in which these objects are
embedded?

The model proposed by Tall does not expose it-
self exactly to the same criticisms, but some points
that are especially important when one thinks about
post-secondary education seem to deserve much
more research. The notion of procept recognizes
the essential symbolic part of mathematical activity.
Nevertheless saying that a symbol can flexibly refer
to both a process and a concept is not enough for
understanding the role played by symbols, and the
mathematical work involving them, in conceptual-
ization. This is especially the case in calculus and
analysis because, as mentioned above, the opera-
tional value of symbols is not necessarily very high.

Symbols are involved in techniques that can be seeq
as components of mathematical practices. The teym,
technique 1s understood here with the anthropologi.
cal meaning developed by Chevallard (1992): a5 5
way of doing things, not necessarily something algo-
rithmic. Techniques can be attributed both a prag-
matic value linked to their effectiveness in prodyc-
ing results and an epistemic value linked to the way
they contribute to the understanding of the math.
ematical objects they involve, The same can be saig
of the symbols that support techniques, and thus of
procepts. Researchers need certainly to know more
about the ways in which work with symbols can help
develop the epistemic value of procepts. The second
point we would like to make is about the transition
towards formal thinking and the reconstructions this
requires. More certainly needs to be known about
this, and we think that complementary insights can
be offered by other approaches, such as those we will
describe in the next paragraph.

Epistemological Approaches

The perspectives described in this paragraph
can be seen as complementary to the preceding
ones. Even if the motivation of research is, as usual,
the desire to understand students’ difficulties and
to develop didactic strategies helping them to over-
come these difficulties, the base of the thinking is
here more historical-epistemological than cognitive.
This trend seems to us well illustrated by the book
synthesizing educational research in linear algebra
edited by Dorier (2000}, and we will use this exam-
ple in order to give an account of this position. We
will come back then to what can be offered by such
approaches to areas other than linear algebra, for
instance calculus. As pointed out by Dorier in his
epistemological work tracing the origin and evolw-
tion of the main concepts of linear algebra such as
vector, vector space, linear independence, set of
generators, basis, rank, dimension and duality, and
linear transformations, the modern theory called
linear algebra results from a long historical process
covering several centuries, from the initial work on
linear systems carried out by mathematicians such
as Euler and Cramer around 1750 to the axiomatic
theory of vector spaces, firstly formulated by Peano
in 1880, which became universally accepted only 50
years later. In this sense,“the concept of vector space
encapsulates, in a very elaborate product, the result
of a long and complex process of generalization and
unification” (p. 59).

The importance of this concept did not come
just from the fact that it allowed the solution of new
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problems'' but more from the fact that it opened
new perspectives on old problems and productive
connections between problems set up in different
mathematical domains once these were recognized
as instances of linear problems in adequate vectorial
spaces. According to Dorier and his colleagues, the
fundamental values of generalization and unifica-
tion at the core of linear algebra are not casily under-
stood, and the apparent simplicity of axiomatic struc-
tures is misleading. Understanding these values re-
quires having already gained sufficient mathematical
experience of linear problems in different contexts
(geometry, systems of linear equations, sequences,
differential equations . ..) and being able to adopt
a reflective view in order to connect these different
mathematical experiences. When introduced abrupt-
ly to the axiomatic structure of vectorial spaces, many
students feel understandably overwhelmed with new
definitions and vocabulary, immersed in a formalism
they cannot really make sense of. Robert and her col-
leagues termed this the obstacle of formalism (Rob-
ert et al., 2000). Making sense of this formalism and
understanding abstract linear algebra as more than a
pure formal game requires one to establish reflective
links with one’s previous linear experience.!? This
contributes to make linear algebra, as pointed out by
Dorier {2000),

an “explosive compound” of languages, settings and
systerns of representation. There is the geometric lan-
guage of lines and planes, the algebraic language of
linear equations, n-tuples and matrices, the abstract
language of vector spaces and linear transformations.
. There are the settings of geometry, of algebra, but also
“of graphical representations which allow a metaphoric
use of geometry in higher dimensional spaces. There
are the “graphical,” the “tabular” and the “symbolic”
- registers of the languages of linear algebra. (p. 274)

As evidenced by research, teachers and texts
constantly jump among these languages, settings,
and semiotic systems as if conversions among these
were obvious. To this complexity one must add the
diversity of the associated reasoning modes. Sierpin-
ska (2000} for instance distinguished three different
reasoning modes that strongly intertwine in linear al-
gebra: the synthetic anid geometric in which mathe-
matical objects are, in some way, directly given to the

mind, which tries to grasp and describe them; the
analytic-arithmetic mode in which objects are given
indirectly by formulas or equations that make calcu-
lations with them possible; and the analytic-structural
mode in which objects are also given indirectly, but
this time through a set of properties. Again, Sierpin-
ska showed that university teachers jump regularly
without any precaution from one mode to another,
leaving the responsibility for making connections to
the student.

This is also an issue of the duality between the
Cartesian and parametric points of view. Alvez Diaz
(1998) has shown that, even if the conversion be-
tween parametric and Cartesian representations of
subspaces can be, a priori, easily achieved thanks to
algorithmic techniques in finite dimensions—those
attached to the solving of linear systems—a flexible
connection between these two points of view is hardly
ever achieved by advanced students. Once more, look-
ing back at history shows that the apparent easiness
of such conversions is misleading. Understanding and
mastering these took a very long time and was tightly
linked to the Jong-term development of the concept
of duality. Once more, an analysis of textbooks and
teaching practices evidences the poor sensitivity of
university educators to these difficulties.

The research on linear algebra offers views on
learning processes that are complementary to the
process/object research, emphasizing the specific
epistemological status of concepts that have a particu-
lar generalizing and unifying role in the mathematical
universe and suggesting that specific strategies have to
be developed if one wants to have this epistemological
status accessible to students. Of course, a more practi-
cal initiation to linear algebra can be organized, and
this corresponds to an increasing tendency in post-
secondary systems facing students’ difficulties with ab-
stract linear algebra. Powerful algorithmic techniques
in linear algebra can give access to many conceptual
ideas, as for instance shown by Uhlig (2002}, and one
can consider that this level of conceptualization is
enough for many students. But research also shows
that such an approach necessarily limits the modes
of control that students can have on their mathemati-
cal work in linear algebra, and that when students
are deprived of means of theoretical control on the

When students are introduced to calculus concepts, for instance the concept of derivative, they guickly can understand what mathematical
power they gain for solving a 1ot of problems linked to variation and optimization. Finding problems playing a similar role for showing the
power gained through introducing linear algebra ideas is not so easy. As shown by the historical development of linear algebra (Dorier,
2000), axiomatic theory took a long time to be recognized as something essential, and this was achieved only when mathematicians used
this theory for dealing with infinite nondenumerable spaces in functional analysis, something out of the range of university beginners.
* This is the rationale for different didactic strategies presented in the book.
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technigues they use, they are easily trapped by “formal
skids” as shown by Alvez Diaz (1998).1

The research also shows the essential status of the
“connective dimension” in learning processes and
highlights the diversity of the connections at stake:
connections between setlings and contexts, between
points of view, between languages, between semiotic
registers, and between reasoning modes. It thus con-
firms that cognitive flexibility is a crucial dimension
of learning at these advanced levels and shows that
this cognitive flexibility requires, to be adequately ap-
proached and understood, to go beyond the idea of
conversion between different types of semiotic rep-
resentation—the way in which it has often been ana-
Iyzed in the research literature.

Coming back to the domain of calculus, one can
identify similar phenomena in the transition towards
formal analysis. When the fundamental concept of lim-
it was formally defined in the 19th century, the main
ambition was to establish the field of differential and
integral calculus with solid foundations. This formal
concept of limit can be given the status of “proof gener-
ated concept” according to the categories introduced
by Lakatos (1976). Being sensitive to such mathemati-
cal concerns requires some particular mathematical
culture, and developing this sensitivity in students cer-
tainly requires specific didactic strategies, as is the case
for the notion of algebraic structure.

Whatever the way we express it, we touch here
on the fact that different forms of conceptualizations
can be a priori attached to the same concept, each
of these being a coherent whole characterized by the
experiences and problems that can be approached
and made sense of, the techniques it offers for solving
these problems, and a specific vision of mathematical
rationality, and based on a specific level of formaliza-
tion and symbolic manipulation. Conceptualization in
any of these forms can a priori reach a high level of
sophistication, as evidenced by history, and thus plac-
ing these too strictly in a hierarchy is not necessarily
the most appropriate way of understanding mathemat-
ical thinking and learning, even if this is the general
tendency. The idea of hierarchy leads us to see these
different forms as corresponding to different cogni-
tive levels and to think of cognitive growth as a transi-
tion process between these different levels. This is not
necessarily the most appropriate metaphor for cogni-
tive growth, as evidenced by research that shows that
in expert practices different forms coexist, that univer-

sity teachers for example jump so naturally from one
form to another. If we do not adopt a strict hierarchi-
cal perspective, nevertheless other issues immediately
emerge: issues of connection, relative importance, and
respective role. These are different but not easier to
solve, and certainly do not have uniform or universal
answers. What researchers can nevertheless infer from
both epistemological and educational research carried
out up to now is that the connection between differ-
ent forms of conceptualization is cognitively costly as it
obliges to connect different ways of doing and thinking
mathematically in a particular area, and to give each
of these a particular role, and an importance that of
course may vary according to the context. Research in
geometry such as that carried out by Houdement and
Kuzniak (1999), inspired by Gonseth’s epistemological
perspectives, can be considered as a step in this direc-
tion. Following Gonseth, they distinguish three main
geometrical worlds: the worlds of practical geometry,
natural geometry, and axiomatic structures, and they
try to describe the characteristics that mathematical
work presents in these different worlds. They show that
each of these develops its own approach to geometry
and rationality, and each has led to the development of
sophisticated techniques and results, which are incom-
mensurable between them. They also show that text-
books and elementary courses for preservice teachers
jump without any precaution from one world to anoth-
er (essentially between the first two), and that this fact
makes it especially difficult for elementary teachers to
understand the relationships between these different
geometries, and the consequences for pupils’ difficul-
ties and curricular goals.

The Integration of New Cognitive
Approaches

As evidenced by the research literature, for in-
stance by the evolution of the AMT group of PME,
educational thinking on learning processes is now
influenced by different cognitive approaches. In this
part, we consider the influence of neurosciences and
theories of embodied cognition. Neurosciences have
now informed the investigation of cognition in math-
ematics with research on perception and geometry
(Berthoz, 1998; Longo, 2003) and on numbers and
arithmetic, such as those by Dehaene (1996). Thanks
to visual brain imaging, researchers can now localize
those brain areas actuated in the solving of different

% For instance, Alvez Diaz shows that students customarily manipulate linear objects such as sets of vectors, matrices, linear transformations,
linear systems, and determinants through numerical tables. These tables are, a prior, efficient semiotic instruments, but students tend to
operate on the lines and rows of these tables automatically, without taking into account the mathematical meaning these operations have
or not according to the object the table represents. This behavior generates “formal skids” leading to absurd results or contradictions that
students generally do not notice.
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inathematical tasks and generate a dynamic image of
srain activity. The results obtained show some very
ﬁteresting facts, for instance that the human brain
eems Lo be genetically equipped with a sort of ana-
ogic counter that allows humans to globally compare
uantities, and moreover that the brain areas involved
n this are not the same as those used for counting
nd exact calculations. Research carried out with
eople who have brain damage shows also up to what
oint our numerical abilities are, at brain level, de-
omposed into a complex of localized processes de-
pendent not only on the task but also on the precise
ontext evoked in the task.

With some exceptions, these results have not con-
‘cerned up to now advanced learning processes such
as those considered in this chapter, but they do renew
‘6ur attention to the dependence of learning process-
s on the biological condition of human beings. The
increasing influence taken, in the educational world,
by theories of embodied cognition reflects this atten-
tion. Embodied cognition, which began to develop in
gnitive sciences in the eighties (Varela et al., 1991),
mivestigates cognition as a physically embodied phe-
nomenon realized via a process of codetermination
etween the organism and the medium in which it
exists. Within this perspective, abstract understand-
ngs are grounded in bodily experience; an example
frequently quoted is that of the concept of balance
(Johnson, 1987) whose genuine meaning stems from
our physical experience of bodily equilibrium and loss
f equilibrium. Such bodily experience, according to
the theory, gives way to perceptual-conceptual primi-
ives called image-schemata that function as patterns
1id allow for the organization of experience. Their
zextension to different domains such as art {the “bal-
“ancing” of colors in a painting), accountancy (“bal-
cing” 2 budget), or mathematics ("balancing™ an
quation), which is generally a cultural phenomenon,
leads to embodied concepts that are all grounded in
.this primitive physical experience. These extensions
occur through conceptual mappings involving con-
ceptual metaphors, hence the idea of mathematical
knowledge as something whose source is metaphori-
al thinking (Lakoff & Nunez, 2000),
The article published by Nufiez, Edwards, and
Matos in the special issue of ESM “Teaching and
Learning Mathematics in Context” (Boero, 1999} il-
* lustrates quite well how this perspective can be used
to reflect on the learning of advanced mathematical
- concepts, such as the concept of continuity. Starting
from the classical distinction between a natural idea

of continuity characterizing a process without gaps
(the vision of Euler of a continuous curve as a curve
that can be drawn without lifting the pen) and the
formalized idea of continuity due to Weierstrass, the
authors showed that these two mathematical ideas
are grounded in two very different conceptual meta-
-phors. The first one grounds in what they call “the fic-
tive motion metaphor,” which they summarize by the
following sentence: “A line is the motion of a traveller
tracing that line” (p. 56). According to this cinematic
vision, the curve is not a set of points but points can
be put on it like milestones along a road, and points
¢an move on it as travellers on a road. Students’ and
mathematicians’ language is full of references to this
cinematic vision of continuity, as also in everyday dis-
course. Metaphors can also be associated with the
Cauchy-Weierstrass notion but these are radically dif-
ferent: “Aline is a set of points”; “Continuity is gapless-
ness”; “Approaching a limit is preservation of close-
ness near a point.” Points are in this case constituents
of the line, and its continuous character that resulis
from gaplessness is no longer evident. Being continu-
ous for a function means that it preserves gaplessness:
The image of a continuous set is a continuous set.
The authors use this analysis for criticizing the usual
teaching approach that establishes a clear hierarchy
between these two conceptions of continuity and pres-
ents the € definition as the one that captures the es-
sence of the mathematical idea, which is in fact multi-
form. These authors reject a vision of learning about
continuity that would see it as involving the rejection
of the natural and cinematic conception and its re-
placement by the set-theoretical one, and the teach-
ing strategies that more or less explicitly rely on such
a vision. Of course, this does not contradict the fact
that the set-theoretic conception, through the math-
ematical tools it provides, allows the solution of prob-
lems inaccessible to the cinematic conception. Even
if expressed through another theoretical frame, it is
interesting to point out here concerns very close to,
for example, those expressed above concerning the
different geometrical paradigms.

The influence of embodied cognition is also vis-
ible in the way technological issues are addressed to-
day at post-secondary level. In the early nineties, two
main approaches in educational research featured at
this educational level: the programming approach
and the visual and multirepresentational approach.
Educational research began to be sensitive to what
could be offered by technological devices that simulate
movement, thanks to the pioneering work by Kaput

" This is for instance visible in the way that Tall (2004) analyzes today the cognitive role of technological tools that he began to develop a
long time ago, within other theoretical frames (as mentioned above).
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and Nemirovsky with “Math Car” (Kaput, 1992), but
this research concerned young students with limited
mathematical knowledge. The impressive amount of
research work carried out on representations (see the
two special issues of the Journal of Mathematical Behav-
ior edited by Goldin and Janvier, 1998, for a synthesis)
and on the use of multiple representations for learn-
ing concepts such as the function concept, leading to
what Confrey and Smith (1994) termed an epistemology
of mulliple representations, developed rather indepen-
dently. As expressed by Borba and Scheffer in a spe-
cial issue of ESM (2004), thanks to the development
of technologies like CBR (Calculator-Based Ranger)
the context today is changing and new perspectives
are being offered to research. Body motion that was
only peripheral to the multiple representation discus-
sion becomes an essential component, and research
on multiple representations takes another dimension
through research concerning embodied cognition.

This connection, and the way it can influence
research at postsecondary level is well illustrated in
the ESM special issue in a paper by Rasmussen et al.
(2004). These authors analyzed how three undergra-
duate students having already completed 3 semesters
in calculus and taking a course on differential equa-
tions progressively made sense of an unfamiliar tool
called the water wheel. Through this analysis, they
tried to characterize how bodily activity and tool use
can combine in mathematical learning, and how this
combination can suggest alternative characteristics of
knowing. The water wheel is a complex object. It con-
sists of a clear, circular acrylic disc holding 32 plastic
tubes around its perimeter. The disc is mounted on an
axle and is free to rotate a full 360° and tilt between
0 and approximately 45°. In the center of the disc are
two concentric clear plastic cylinders that contain a

variable amount of oil that acts as damping for the .

system. Water from a bucket with a submersible pump
(with adjustable flow rate) falls into several contiguous
tubes on the “higher side” of the wheel. Each tube has
a small hole at the bottom that allows water to drain
out and be directed back into the bucket containing
the submersible pump for a continual flow of water
into and out of the tubes. When the wheel is tilted,
gravity causes the wheel to rotate. When connected to
a computer, an optical sensor collects data with real-
time displays of angular velocity versus time, angular
acceleration versus time, and angular acceleration
versus angular velocity. Relying on the work develo-
ped by Nemirovsky, Tierney, and Wright (1998) on
students’ developing expertise with a motion detec-
tor, the authors’ analysis takes into account the evolu-
tion of the students’ relationship with the water wheel
along several dimensions: becoming aware of how

the tool may respond to certain aspects of one's ki
nesthesic engagement and not to others, acquiring an
emerging awareness of what the tool does on its own,
independent of one’s action; gradually distinguishing
which actions may affect the tool and the conditiong
that need to be in place so that it continues to remain
sensitive to the actions; and developing a sense for
what outcomes or results are possible, impossibie, or
difficult to obtain. Analysis along these dimensions
helps the authors understand what kind of knowledge
can be built through physically interacting with the
tool, and how. This leads them to elaborate on a par-
dcular type of knowing called krowing-with, initially
introduced by Broudy (1977). Knowing-with differs
from commonly-identified forms of knowing such
as knowing-that or knowing-how in that it involves
at once the subjective feel and the objective sides of
the experience and thus seems to the authors espe-
cially appropriate for describing the kind of cognitive
construct that is at stake in the interaction with the
tool. The language used by the students in this study
shows indeed a very strong personal connection with
the tool as if they were themselves becoming the tool,
and this shapes the knowledge they develop about
concepts such as angular velocity and acceleration in
this environment.

Without any doubt, research like this attracts at-
tention to learning processes that have been not suf
ficiently taken into account in post-secondary educa-
tional research up to now. The process raises interest
ing questions, shows intriguing phenomena, but is still
in an exploratory phase. What kind of knowledge ex-
actly is built in the sessions with the water wheel? How
can students’ utterances that are mainly of a qualitative
nature, and often fuzzy, give way to something more
analytical? How does knowing-with connect with the
other forms of knowledge that develop at post-second-
ary level? How can it serve to understand and work
with other mechanisms, other contexts? These seem
today to be mainly open questions.

Investigating how qualitative knowledge that
emerges from physical interaction with a calculator
can be connected to more analytical forms of knowl-
edge that are aimed at by educational institutions was
a focus in the recent doctoral thesis by Maschietto
(2002). This thesis addressed the transition between
algebra and calculus, and the emergence of the dialec-
tic interplay between, on the one hand, the point-wise
or global perspective that characterizes the relation-
ship that students develop with functions in algebra
courses, and on the other hand, the local perspective
that is attached to calculus and analysis. From a tech-
nical point of view, this emergence requires a recos-
struction of the relationships with algebraic computa-




tions: The different terms of an algebraic expression
are no longer given the same weight; their treatment
depends on their respective orders of magnitude
and relies on the fundamenta_l idea of relative (or
absolute, in nonstandard analysis) negligibility. The
mathematical world of algebraic computations is thus
deeply affected, at technical level and also in terms of
strategies and control. Maschietto explored how these
fundamental ideas can develop through adequate in-
teraction with calculators, and the corresponding re-
constructions may be promoted by appropriate didac-
tic engineering, without entering the field of formal
analysis. Maschietto relies on the potential offered by
graphic calculators for visualizing local linearity (a po-
- tential that is well recognized today}. The influence
- of embodied cognition is visible in the sensitivity she

the metaphor of microlinearity. But what is added to
these perspectives is a careful attention to the math-
ematical limits of visualization (it shows closeness, but
not the order of the approximation that is essental
ere), a careful attention to the way the microlinearity
metaphor can become an operational tool, and to the
lifficulties met by students in that operationalization.
'Eudents are very soon sensitive to the phenomenon

f microlinearity that they recognize as an invariant.
Moreover the distinction that they make between the
two perceptive categories of straight and curved leads
em to think that, beyond what they see, there is a
10re complex process involving infinity (something

€ students’ responsibility, If not carefully dealt with,
ne microlinearity metaphor casily loses some of its
sential attributes and only supports fuzzy discourse
and knowledge; the necessary reconstruction of alge-
raic techniques takes time. Results show that funda-
ental and deep ideas and techniques of analysis can
be developed in such a context

nt mathematical and
didactic expertise from the teacher.

This research influenced by embodied cognition,
Y the attention it pays to cognitive processes and the
ituations in which they develop, and the possible “ecol-
8y” of these, leads us into the final section of this part
€voted to more global research approaches, inspired
Y the increasing influence in the educational field of
Ociocultural and anthropological approaches.

MATHEMATICS THINKING AND LEARNING AT POST-SECONDARY LEVEL B 1025

The Integration of More Global Approaches

In this part, we consider approaches to mathema-
tical thinking and learning at postsecondary level in
which the consideration of sociocultural and institutio-
nal practices plays an essential role. According to the
research culture in which it has developed or is deve-
loping, this consideration takes different forms and re-
lies on different theoretical frames. These frames are
often drawn from outside the field of mathematics edu-
cation itself, as attested by the increasing number of re-
ferences to Vygotsky, to Activity Theory, and to frames
developed for understanding enculturation processes
in various kinds of contexts. It relies also on frames de-
veloped inside the educational field, This is the case
with the emergent approach developed by Cobb and
Yackel (1996) in the USA that aims at connecting psy-
chological constructivist and sociocultura] perspectives
for the analysis of classroom processes and the design
of classroom experiments. This is also the case with
the anthropological approach initiated by Chevallard
from the early nineties (Chevallard, 1992; Chevallard
& Bosch, 1999), which is clearly distinct from construc-
tivist perspectives. The theoretical constructs develo-
ped by Godino and his colleagues in Spain (Godino,
2002; Godino & Batanero, 1998; Godino, Batanero
& Roa, 2005) or by Cantoral, Farfan, and their col-
leagues in Mexico (Cantoral & Farfan, 2003) play for
other researchers a similar role. These approaches all
have their differences in detail, and the distance taken
from constructivist and socioconstructivist perspec-
tives may vary, but they share the common view that
mathematical objects emerge from human practices,
and that these practices are institutional and socio-
cultural practices. The term institution here has a very
wide sense and includes any kind of formal or informal
structure that organizes or conditions our social and
cultural activities. The approaches also share the view
that institutions develop with regard to any object that
is recognized as 2 mathematical object a specific idea of
what it means 1o know that object, thus defining a set
of institutional norms for knowledge. So, the personal
relationship one develops with mathematical objects
emerges from the institutional practices and norms
one has experienced in the different institutions where
this object has been met. Within this perspective, un-
derstanding institutional practices and norms is sine
qua non for the understanding of learning processes.
Social and cultural mediations thus play a crucial role,
and not by chance do the frames we are discussing pay
so much attention to the semiotic dimension of math-
ematical activity, semiotic tools being an essential chan-
nel for these sociocultural mediations. In this part of
the chapter, we would like to show the complementary

e |
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insights these approaches offer to the understanding of
learning processes and students’ difficulties. Different
examples will help us to illustrate what is offered and
to show the diversity of the research developed within
these perspectives.

In all the perspectives considered here, individual
knowledge emerges from sociocultural practices. Both
individual and collective knowledge develop in the
classroom, in a subtle intertwining, and one cannot
understand individual cognitive development without
considering its collective counterpart. Our first exam-
ple illustrates this dimension, showing one perspective
developed within the emergent approach for analyz-
ing the collective construction of knowledge."” The
research (Stephan 8 Rasmussen, 2002; Yackel, Rasmus-
sen, & King, 2000} deais with the teaching of differential
equations and was carried outin the frame of a 15-week
reformed course that tried to benefit from technology
for emphasizing graphical and numerical approaches
to the topic. From a theoretical point of view, it relies,
as mentioned above, on the emergent approach, which
considers that learning is both an individual and social
accomplishment with neither taking primacy over the
other. The design of the instructional sequence was in-
spired by the theory of realistic mathematics education,
initiated by Freudenthal (1991) and further developed
by the Freudenthal Institute (Gravemeijer, 1999). Ac-
cording to this, learning trajectories are built, giving
students the opportunity to create meaningful mathe-
matical ideas as they engage in challenging mathemati-
cal tasks. The development of knowledge is organized
around cycles of horizontal and vertical processes of
mathematization (Treffers, 1987). Horizontal mathe-
matization refers to “formulating a problem situation in
such a way that it is amenable to further mathematical
analysis” whereas vertical mathematization “consists of
those activities that are grounded in and built on hori-
zontal activity” such as “reasoning about abstract struc-
tures, generalizing and formalizing” (Rasmussen et
al,, 2005, p. 54). Further, in this research the collective
development of knowledge is approached through the
analysis of argumentation, by using Toulmin'’s (1969)
model of argumentation. According to this model, the
core of an argument consists of three parts: the data,
claim, and warrant. Briefly speaking, the data provide
evidence for the claim, and the warrant explains how
the data leads to the claim. Moreover, in case the valid-
ity of the warrant is challenged, the presenter must pro-

vide a backing to justify why the warrant, and therefore
the core of the argument, is valid. Progression of collec-
tive knowledge is associated to the development of tak-
en-as-shared knowledge, and this is achieved through
a detailed analysis of the evolution of collective argu-
mentation during the course. The researchers consider
that mathematical ideas become taken-as-shared in the
classroom community when

either (1) the backing and/or warrants for an argu-
mentation no longer appear in students’ explana-
tions and therefore the mathematical idea expressed
in the core of the arguments stands as self-evident, or
(2} any of the four parts of an argument {data, war-
rant, claim, backing) shift position (i.e., function)
within subsequent arguments and are unchallenged.
(Stephan & Rasmussen, 2002, p. 462}

This allows the researchers to develop an interesting
analysis of the progression of the classroom knowi-
edge, organized around the emergence and develop-
ment of six mathematical practices: predicting indi-
vidual solution functions, refining and comparing in-
dividual predictions, creating and structuring a slope
field as it relates to prediction, reasoning about the
function P (in P'(#} =f(P)) as both a variable and a
function, creating and organizing collections of so-
lution functions, and reasoning with spaces of solu-
tion functions. The researchers stress that the analy-
sis shows a nonsequential development over time of
these different practices. For instance, the idea that,
for an antonomous differential equation,' the phase
portrait is invariant by horizontal translation began to
emerge in the second session (not of course articu-
Iated in the expert language we use here) and wenton
being discussed until the 11th session. These results
are of course linked to the choices made in the design

'of the instructional sequence regarding the learn-

ing trajectory, the precise tasks proposed to students
along this trajectory, and the sharing of mathematical
responsibilities between teachers and students. The
mathematical practices developed here contrast with
the practices usually adopted in differential equation
courses and offer evidence that teaching designs that
are more respectful of the epistemology of the field,
both meaningful for students and reasonably ambi-

tious'? from a mathematical point of view, can exist. -
The emergent approach, by the attention it pays to the

'* Another interesting dimension of this research we just mention here deals with the progressive development of sociomathematical norms

in this reformed course,

I* Adifferential equation y” = f(y,4) is said autonomous if the function f does not depend on & This reform course only dealt with autonomous

differential equations.

" The course for instance approaches the dynamics of differential equations depending on parameters and introduces and discusses

bifurcation diagrams.




connection between the individual and the collective,
- helps to understand the essential role played by the
classroom community in the individual development
of knowledge. By the attention it Pays to social norms
and sociomathematical norms, it also makes clear that
new practices cannot be developed without removing
some of the constraints induced by usual norms, and
thus raises the issue of the institutional viability of in-
novative practices.

The second example we present deals with a cru-
cial issue: that of the transition between secondary
- and tertiary education. This transition is widely known
as a serious problem, and the difference between the
‘mathematical cultures of secondary school and col-
‘lege/university is generally admitted as an essential
source of it. These two cultures are moreover nowa.
days generally regarded as two cultures moving on
‘roads increasingly distant, which can only make the
‘transition harder and harder. We are thus interested
in looking at this problem from an anthropological
or sociocultural perspective. This was the perspective
adopted by Praslon (2000) in France, in his thesis
devoted to the notion of derivative at the transition
between high school and university. Praslon used the
anthropological approach of Chevallard and the asso-
ciated conceptual tools in order to explore the charac-
teristics of the two cultures (limited nevertheless to the
tase of science-focused students both at high school
and university). In this approach, as stated above,
knowledge emerges from practices. Practices are ana-
yzed through the notion of praxeology, a complex that
ncludes types of tasks, ways for solving tasks called
echniques (not necessarily algorithmic techniques in
he usual sense), a discourse that explains and justifies
echniques called technology, and theories that orga-
ize and structure the technological discourse. This
ed-Praslon to characterize the praxeologies involving
the notion of derivative in the two different institu-
ions that he considered. This characterization led to
nteresting results. He showed that, contrary to what is
ften said, the secondary—tertiary transition in this area
ot a transition between informal and formal math-
“ematics, between intuitive and rigorous approaches.
ather the transition is more an accumulation of “mi-
ro-breaches,” which affect the balance between the
ol and object dimensions of the derivative, the bal-
ance between the study of particular objects and ob-
Jects defined by general conditions, and the balance
between algorithmic techniques and techniques that
have more the status of general methods to be adapt-
ed to each particular case. These shifts also result from
the increased autonomy given to students: as regards
the choice of appropriate settings, appropriate semi-
Otic registers, and the connections and changes made

between these during the solving process, and more
globally as regards the overall development of the soly-
ing process (similar tasks often appear in the two insti-
tutions, but the number of intermediate questionsin a
probiem is far from being the same). They also result
from the incredible diversification of tasks that occurs.
From a culture organized around the mastery of a re-
stricted number of tasks that can become reasonably
familiar, and in which the progression in complexity
is carefully managed, students pass into a culture in
which diversity is the norm and the greater number
of new notions to be covered in the same time pertod
makes routinization of practices much more difficult.
Once more it is evident that cognitive flexibility is an
essential criterion for success. In order to make both
students and university teachers sensitive to the differ-
ences between the two cultures, Praslon has created a
set of tasks that, according to his results, are situated
today in the “gap” between the two cultures and reveal
the main facets of the differences between these. Pur-
posely, none of the tasks requires solution by formal
analysis. They are designed to be proposed to the stu-
dents before their entrance to university or at the be-
ginning of the academic year, and the students’ work
discussed with university teachers.

The anthropological framework is also involved
in the instrumental approach initiated by French re-
searchers for addressing issues linked to the integra-
tion of Computer Algebra Systems (CAS) in mathe-
matics education (Guin, Ruthven, & Trouche, 2004).
Combining Chevallard’s anthropology with perspec-
tives coming from cognitive ergonomy (Rabardel,
1995}, the instrumentai approach analyzes how math-
ematical praxeologies are affected by the use of CAS
in their technical and technological components, This
approach leads to specific attention on what is called
instrumental genesis, which is the process in which there
is a transformation of a tool {(here a CAS) into a math-
ematical instrument, either for an individual or for an
institution. The results obtained {Guin et al., 2004)
show the complexity of this process, which for a long
time has been underestimated in educational research
dealing with technology, and the deep extent to which
learning processes intertwine mathematical knowl-
edge and knowledge about the tool itself. The sensi-
tivity to institutional aspects allowed by the anthropo-
logical frame leads also to a better understanding of
how a teacher’s professional work is affected by the
integration of such tools and offers a vision of these
changes quite different from what is generally offered
by the literature. We will not enter into more details
here regarding this approach, whose constructs have
been elaborated and used in the context of secondary
education up to now (see Guin et al,, 2004, for such

*
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details). However, the results obtained on mathemati-
cal topics such as calculus that are generally taught
primarily at post-secondary level lead us to think that
it can be of interest in the future for research involv-
ing technology, and especially professional technol-
ogy" as is the case for CAS, at postsecondary level. Its
constructs could certainly also be usefully connected,
to those developed by Nemirovsky and his colleagues

mentioned above, as the two approaches share the

same fundamental idea: technology cannot be consid-
ered only as a kind of educational assistant. It deeply
shapes what we learn and the way we learn it, and an
efficient integration of technology in mathematics ed-
ucation has to tzke this seriously into consideration,
in terms of institutional practices, values, and norms.

In the preceding, we have approached the idea of
culture in terms of practices and praxeologies. Oth-
er categorizations can be used. Those introduced by
Hall (1981) have been used for instance by Sierpinska
(1989, 1994) and more recently Nardi (1996). Hall
recognizes three types of consciousness, three types
of emotional relations to things: the formal, the infor-
mal, and the technical. In the context of mathematical
culture, the formal level corresponds to beliefs around
what is mathematics about, what are the legitimate
tools and methods for mathematical work, and so on;
the informal level corresponds to schemes of action
and thought, unspoken ways of doing things or think-
ing that result from experience and practice, what is
also often called “tacit knowledge”; and the technical
level corresponds to the explicit part of knowledge,
to the techniques and theories. Approaching learn-
ing as an enculturaton process leads researchers to
try to understand how these three levels and the in-
teractions between these can develop in a given cul-
ture, and why. Sierpinska for instance first used this
approach in reflecting on the long-term program of
research she had developed about the learning of the
concept of Iimit. In this program, the determination
of epistemological obstacles, further complemented
by the dual notion of “act of understanding,” had
played an essential role. Thinking in terms of Hall’s
categories, Sierpinska inclined to ask herself what the
cultural situation of epistemological obstacles can be.
According to her, these can be situated both at formal
and informal levels, but not at the technical level.

Nardi {1996) used Hall’s categories in order to un-
derstand the tensions between the mathematical cul-
ture of students entering the university and that of the
university. She also looked at the ways enculturation
progresses, taking into account not only the technical

level as is usually done but also the formal and espe-
cially the informal level, through the accumulation of
experience shared with the expert (here a tutor) and
in the process of appropriation by the internalising imi-
tation of the expert’s cultural practices. The data she
collected led her to focus on concept image construc-
tion and on formalization in order to analyze the en-
culturation/cognitive processes at stake. She pointed
out the tension existing between the informakintuitive-
and-verbal mode of thinking on the one hand, and the
formal-abstractand-symbolic mode on the other, and
the difficulties students meet with the mechanics of for-
mal reasoning. These tensions are especially visible in
calculus, but Nardi showed that the exercises proposed
to students, instead of helping them overcome the epis-
temological obstacles they face, can reinforce them: for
instance when exercises constantly expose students to
infinite sums that can be broken up and rearranged as
finite sums, reinforcing their belief that infinite sums
can simply be treated in the same ways as finite sums.

The two examples just presented focus on the
understanding of students’ learning of mathematical
concepts. But students’ learning is also affected more
generally by the cultural practices they are part of,
and by the visions of mathematical activity and math-
ematical learning these practices induce. As we noted
above, such concerns were already present in the first
Handbook, in the chapter written by Schoenfeld. In
our opinion, even if research has remained sensitive
to these issues, knowledge in this area did not substan-
tially improve during the last decade. Today, neverthe-
less, one can think that changes in the context of uni-
versity teaching—massification of tertiary education
and the resulting diversity of the student population,
increasing student disaffection for mathematics and
science—can stimulate research. Moreover, the devel-
opment of cultural approaches over the last decade
better equips researchers for approaching the difficult
questions at stake. From this point of view, the article
by Zevenbergen {2001) in the ICMI Study on teaching
and learning mathematics at university level is an in-
teresting example. Zevenbergen’s particular concern
is about equity and the characteristics of mathematical
practices at university that can be seen as excluding
some groups of students, preventing them from learn-
ing and succeeding. His interest for this issue scems
linked to the expansion of the higher education sec-
tor and to the resulting increased diversity of students.
His approach is cultural and especially relies on so-
ciolinguistics (Halliday, 1988). Language is seen as a
form of cultural capital, and the role of language in

18 “That is, 2 CAS is software created to satisfy the needs of professional users of mathematics, rather than software created for the needs of

mathematics learners. :
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the access 10 mathematics is seen as something essen-
tial. Hence the interest in the analysis of the linguistic
practices in mathematics and in the understanding of
their potentially excluding role for new categories of
students entering the university: those from the work-
ing class and those who are not native English speak-
ers. As pointed out by this author, research within
these perspectives has heen mainly concentrated up
to now on elémentary and secondary school. Very lit-
tle has been done at post-secondary level.

Another piece of research that illustrates how the
evolution of theoretical approaches can serve to renew
research approaches is the recent article by Castela
(2004). This research analyzes how tertiary institutions
influence students’ personal study, and thus learning,
by comparing two different types of tertiary institu-
‘ions that exist in France: specific courses (known as
.CPGE) that prepare students for entry {o the most
‘prestigious business and engineering schools, and

‘university courses. The stimulus for her research was
the observed discrepancy between the respective rates
~of success of students coming from these two types of
institutions at the national competition for secondary
teachers (CAPES), after 1 year of common prepara-
‘tion. From this, she investigated the characteristics of
‘the mathematical cultures in the two institutions and
‘how these influenced the students’ vision of mathemat-
ics learning and personal achievement in mathermatics,
and how this achievement is more or less sufficient for
the purposes of entering the CAPES competition. She
showed that the type of task proposed at the CAPES
(long problems covering extensive mathematical do-
mains) requires specific competences in terms of strat-
egy and structuration of problem solving that are not
really taught. Then she tried to match these require-
ments with the ways that the two categories of students
sually work. She for instance showed that CPGE stu-
dents have a rather operational vision of mathematics
‘and are sensitive to the need for competence in strat-
egy and structuration. University students however per-
ceive mathematics more in terms of content and put
-nore emphasis in their work on lectures. She identi-
fied three different approaches to problem-solving in
“students’ practices: a drill-and-practice approach, a
- Teproductive approach, and a transferential approach.
‘The first approach is more representative amongst uni-
ersity students, the last more amongst CPGE students.
By deploying the tools provided by didactic anthropol-
08y she then showed how these different attitudes can
€merge from the adaptation of students to the institu-
tions in which they study.

We find it interesting to connect these results
with those obtained by Lithner, in his observation of
Students’ functioning with textbook exercises (Lith-

ner, 2003). Lithner used three categories in order
to qualify the forms of reasoning used by students in
task solving:

Plausible reasoning (PR} if the argumentation deve]oped

i} “is founded on intrinsic mathematical properties of
! the components involved in the reasoning, and
ii) is meant to guide towards what probably is the
truth, without necessarily having to be complete
or correct” {p. 32),

established experience (EE) if argumentation

i) "is founded on notions and procedures estab-
lished on the basis of the individual’s previcus
experiences from the learning environment,”

i) [the same as for plausible reasoning] (p. 34),

identification of similarities (IS), if

i) “the strategy choice is founded on identifying
similar surface properties in an example, theo-
rem, rule, or some other situation described ear
lier in the text,

i) the strategy implementation is carried out through
mimicking the procedure from the identified situ-
ation,” (p. 3b)

Even if the academic results of the three catego-
ries of students observed by Lithner are quite differ-
ent, clear similarities appear in their functioning. Al-
most all of the students’ homework time seems to be
spent on exercises. IS reasoning dominates strongly,
and the evaluation is done by comparing with the
textbook solutions section. He also showed that, due
to the organization of the textbooks used and to the
exercises they propose, most exercises can be solved
by IS reasoning. In Lithner's experiment, more elab-
orated forms of reasoning became necessary when
students made errors in the implementation of their
IS strategies, but, even in this case, PR remained very
limited. What is observed suggests that the forms of
work based on memorizing and maimicking can be
considered by the students as efficient for passing ex-
ams, and he sees these as “unintended by-products of
their mathematical instruction” (p- 54).

In this part of the chapter, we have focused on
what we perceived as major evolutions of different
theoretical approaches linked to both internal and
external factors in the field of mathematics education.
The choices we made for our presentation helped us
structure it, but perhaps we have too strongly opposed
the sociocultural and anthropological approaches to
the preceding ones. The reality of research is much
more complex. Complementarity is certainly a more
appropriate term than opposition. Many researchers
combine several frames in the same research project.

e Emmme |
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For instance, Nardi (1996) combined a cultural ap-
proach and the use of process/object duality, whilst
Praslon (2000) combined an anthropological general
approach with different cognitive perspectives used in
educational research about calculus. Favoring certain
approaches nevertheless shapes the problematics and
methodology of the research, and through these the

kind of results that one can access and the way they‘

will be expressed. Hence there is an explosion of no-
tions and terms that is not easy to make sense of, but
links and partial translations are often possible, as we
have also tried to show. In the next part of the chap-
ter, we broaden our discussion to new ideas and new
coherences, serving to challenge and complement
those already presented, which will provide further
evidence of the complexity of the issues at stake, and
the fact that any single perspective can only approach
this complexity very partiaily.

EVOLUTION THROUGH THE DEVELOPMENT
OF NEW RESEARCH AREAS

In this part, we turn our attention to two areas of
research that lie outside the core mathematical do-
main generally considered by advanced mathematics
education: research on the teaching and learning of
mathematics in engineering courses, and research on
learning probability and statistics. In these two areas
we hope to illustrate the effects of the five influences
alluded to by the ICMI Study (Holton, 2001):

(1} the increase in the number of students who are
now attending tertiary institutions; (2) major peda-
gogical and curriculum changes that have taken
place at pre-university level, (3) the increasing dif-
ferences between secondary and tertiary mathemat-
ics education regarding the purposes, goals, teaching
approaches and methods; (4) the rapid development
of technology; and (5) demands on universities to be
publicly accountable.

Although public accountability is a generally po-
litical issue that may seem to lie beyond the interest
of researchers, nevertheless it impacts quite directly
in several ways, largely due to influence (1), the grow-
ing proportion of young people in tertiary education.
Public scrutiny of “teaching quality” in universities
has become rather common in the last 15 years, as
increasing amounts of public money are spent on
greater numbers of students. But also there is the
case that as student numbers grow then the funding
mechanisms have changed in many countries, with
studenfs themselves paying growing proportions of

their tuition fees. Thus there is another accountability
to be met as students come to expect a good “service”
for their money, and perhaps hold stronger opinions
than before about the education they expect, setting
up a tension with the education that their teachers be-
lieve is appropriate for them.

Statistics is one of the most widely taught topics at
university level, where many service course students
meet advanced stochastic thinking without any prior
or concurrent experience of advanced algebra or cal-
culus. At the same time, statistics is separating from
mathematics as an academic discipline (e.g., in the
training of mathematicians and statisticians; research

journals and associations} and is taught by teachers

with a variety of backgrounds, rarely by pure mathe-
maticians. As regards secondary education, stochastics
is receiving increasing attention in recent curricula
(e.g., National Council of Teachers of Mathematics
[NCTM], 2000), where it is considered as an essential
component of mathematics education, both due to its
instrumental role to understand other disciplines and
as a vehicle to develop critical reasoning and demo-
cratic values.

In the development of mathematics courses for
engineering, the main trend comes from the techno-
logical influence, particularly stimulated by changes
within professional engineering practice. The tradi-
tional teaching approach, based on having students
spend much time developing fluency with pen-and-
paper mathematical techniques, is giving way to stu-
dents learning how to use computer software (such
as spreadsheets or computer algebra systems) to carry
out mathematical calculations. On the one hand,
this is liberating and empowering, because students
can more quickly become engaged in solving realis-
tic engineering problems. On the other hand, math-
ematicians, and also some engineers, have legitimate
concerns that a fundamental understanding of math-
ematics, as it applies to engineering, could be lost in
these changes.

It is, in our opinion, especially insightful to try to
understand how research carried out in other areas
can contribute to the consideration of mathemati-
cal thinking and learning at postsecondary level. It
can help us question theories and positions as regard
mathematical learning and thinking that have gen-
erally been established having in mind more or less
explicitly the mathematical education of “pure mathe-
maticians” or mathematics teachers and their particu-
lar needs, and also that have focused on a few classical
mathematical domains. It also obliges us to consider
the role of technology in learning in a rather different
way. Indeed, what is often at stake in these domains
is not simply the use of technology for developing
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usual mathematical knowledge but the way in which
echnology is changing mathematical activity and
nderstanding, including problem solving, proving,
easoning, modeling, and symbolizing. Mathematical

and technological expertise and needs are in these
omains much more tightly intertwined.

earning Advanced Mathematics:
he Case of Engineering Courses

This section provides a commentary on recent
rends in mathematics education from the viewpoint of
““service mathematics,” that is, mathematics as taught
‘to non-mathematics specialists and students studying
‘'science, engineering, and other technical subjects. We
focus on trends in the United Kingdom and with re-
spect to engineering students (Kent & Noss, 2003).
We also consider the development of technology for
teaching and learning in service mathematics.

In this section, we move away from a concern with
what might be called intra-mathematical structure
{and cognition), such as debates on the role of proof
in mathematics, or advanced mathematical thinking
as discussed earlier, and we will be more concerned
with questions of modeling—the relationships between
mathematics and other knowledge domains, and the
ways in which computer technologies are shaping
these relationships.

We begin with a sketch of the area of nonspecial-
ist mathematics practice and research. There is in fact
rather little tradition of educational research in the
nonspecialist area, although arguably this area of re-

earch could bring many benefits, given that in terms
of the numbers of students involved there are far more
han the number of specialist mathematics students,
-and it is also the area of mathematics education with
perhaps the most pressing need for changes in cur-
~riculum and teaching approaches, as the “customers”
engineering students and engineering academics)
+. are by many accounts increasingly dissatisfied with the
‘traditional curricula and approaches offered by the
- mathematicians who teach nonspecialist courses. Up
“to now, there have been very few studies of the differ-
‘ent ways that mathematics and engineering students
think about mathermatics (see Bingolbali, 2004; Maull
& Berry, 2000). One of these few has been Magajna’s
interesting and very detailed study of students and
their mathematical thinking while studying at voca-
tional college to become engineering technicians
(Magajna, 2001; Magajna & Monaghan, 2002).

Innovation in engineering mathematics teach-
ing tends to be practidonerled, that is, it is carried
out by university lecturers themselves, who (in most
countries) divide their time between teaching and
research. Educational research papers, if written at
all, tend to take the form of descriptive reports, not
much connected with the research literature of the
world of mathematics education. Where a distinct
research methodology is followed, the pre-test/in-
tervention/posttest approach is still quite common,
which is nowadays out of favor amongst sociocultural-
ly influenced mathematics educators. It remains very
much an open question what kinds of research can
particularly contribute to promoting change amongst
higher education teachers (including connecting
them to educational research), who have traditionally
asserted a high degree of autonomy in their profes-
sional lives, incIuding matters of teaching, and often
harbor a somewhat negative attitude towards math-
ematics education (the “math wars” that broke out in
the 1990s in the USA illustrate some of the tensions
involved here—see Ralston, 2004). There have been
some atternpts to build a research culture for educa-
tional innovation in university teaching. In the UK,
for example, the Higher Education Academy Subject
Network is a governmentfunded initiative that aims
to support lecturers in all major subject disciplines,
including the branches of engineering and science, to
carry out educational projects, share their results, and
generally network ideas about learning and teaching;
one of the significant features of the Network is that
it is based on subjectspecific support centres, direct-
ed and staffed mainly by lecturers from that subject
area—the implication being that lecturers tend to feel
closer in thinking to their fellow subject professionals
than to educational specialists.’

The last 10 years have been a very interesting pe-
riod of change for nonspecialist mathematics teach-
ing—for a range of accounts of these developments
see the outcomes of the ICMI Study on the Teaching
and Learning of Mathematics at University Level,
which took place in 1999 and was published in two vol-
umes of papers (Holton, 2000, 2001); see also the pro-
ceedings of a regular conference on developments in
engineering mathematics (Hibberd & Mustoe, 1997,
2000; Mustoe & Hibberd, 1995). After many decades
of stable curricula and teaching methods—typically,
substantial lecture courses of up to 100 hours per
academic year delivered by mathematics lecturers to
large groups of nonspecialist students (and the notion
of delivery very much underlines the most common

" See, for example, the Mathematics, Statistics and OR Network [http:/ /www.mathstore.ac.uk] and the Engineering Subject Centre [www
-engsc.ac,uk].
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approach, based on transmission of mathematical
content, accompanied by students doing extensive ex-
ercises in techniques)—recent years have seen some
major changes. The impetus for change in mathemat-
ics teaching has come from several directions. From
the direction of professional engineering comes the
enormous change throughout professional practice
with the arrival of cheap and ubiquitous computer
technology. In many cases (in civil engineen'ng, for
example), this has fundamentally changed the techni-
cal nature of work, and this is now being reflected in a
deep-rooted re-appraisal of undergraduate engineer-
ing education. Indeed, new attitudes to “knowledge”
are developing in engineering education (Kent &
Noss, 2003). More and more knowledge is becoming
accessible and potentially relevant to the practicing
engineer—not only mathematics and physical science,
but knowledge concerned with materials, construc-
tion techniques, design methodology, project finance,
law, environmental issues, and so on. Broad agree-
ment is emerging amongst engineers that the way to
deal with this “knowledge explosion” is to implement
a shift in emphasis from teaching built around sub-
ject knowledge (i.e., the topics of engineering theory
and science, and issues of professional practice) to-
ward teaching about the process of engineering (how
knowledge is operationalized), using engineering de-
sign as an organizing and motivating principle of an
engineering degree.

The other direction of impetus comes from school
mathematics: During the 1990s, in the UK (where ex-
pansion of university-level education was and remains a
key government education policy) and in some other
countries, a growing proportion of young people went
to university. At the same time, this was accompanied
by a widely perceived (but usually officially denied)

perception that the level and overall quality of math--

ematical preparation in schools has declined (Smith,
2004, reports on 2 major investigation of this phe-
nomenon). To what extent the decline is true or not,
certainly whereas in the past a relatively elite group of
students would enter university to take degrees in engi-
neering and science, today’s students come from a far
more diverse background and have a far broader range
of mathematical competence (cf. SEF, 2602). School
mathematics in many countries has also changed radi-
cally during the last 20 or so years—a common signifi-
cant change is the “democratization” of mathematics in
schools, a movement that has seen a decline in formal
mathematical activities by students (exercises in geom-
etry, algebra, calculus, etc.—mathematics regarded asa
body of knowledge to be acquired) and an increase in
student-generated investigative activity (projects, etc.—

mathematics regarded as a process in which students
can participate}.

From the perspective of service mathematics, uni-
versity teachers ironically seem to be unhappy with a
style of mathematics curriculum in schools that em-
phasizes a way of working that can help to develop
students’ abilities in problem solving and applying
mathematical ideas—of course, this very much de.
pends on how, and how well, this is done. Yet one can
sense a missed opportunity in this situation: Where
there seems to be a possibility for making connec-
tions, the debate in universities has focused on the
emergence of a gap between the expectations of uni-
versities about new students and the students’ actual
mathematical capabilities; this has been termed the
mathematics problem in the UK. To a significant extent,
however, arguably the notion of “problem” is more a
reflection of a dominant conservative viewpoint to-
wards mathematics teaching than a problematic real-
ity. As Steen (2001) describes, through the particular
influence of the computer mathematics is becoming
more and more relevant to more and more profes-
sional workers, including engineers, and therefore a
rich opportunity is opening up for mathematics edu-
cation, but this will require mathematicians to be
more open to consider changes in the content and
approach of mathematics teaching—either that, or to
see more and more mathematics teaching being un-
dertaken by the users of mathematics, such as engi-
neering departments, themselves. Here, for example,
is a comment recorded (by PK) from a mathematician
specializing in engineering mathematics teaching ata
large technical university in the UK: “We’re pretty tra-
ditional—you would not see much difference between
what we do now and 20 years ago, except that the level
is lower now.”

The Influence of Technology

Implementation of technology has been a big con-
cern generally in university teaching since the early
1990s, when personal computers became accessible in
significant numbers to students in higher education.
One of the striking things about this has been the ten-
dency for researchers and especially implementers to
regard the higher education setting as distinct from
the school setting, and many lessons learnt from the
implementation of IT in school level education have
noticeably not been learnt by those in higher educa-
tion. For example, technology enthusiasm was particu-
larly rife in the early to mid-1990s, much as in schools
about a decade earlier, often in the form of expensive
projects that generally proved unsustainable after the
special project funding was taken away.
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The strength of enthusiasts is that they innovate, they
try new ideas, they explore where more cautious col-
leagues might wait and see. Their weakness is that the
outcomes of their enthusiastic endeavours are often
poorly contextualised, theorised or evaluated. (Bur
ton et al,, 2004, p. 221)

It is pretty much recognized, by mathematics edu-
cators at least, that for technology to have a sustain-
able impact on teaching and curriculum, then there
has to be some deep-reoted thinking about the aims
and methods of teaching-—as the anthropological
approach in mathematics education illustrates (see
above). Of course, to do this in the complex political
atmosphere that surrounds a typical university math-
emaltics programme is no easy task, and even today
cne is inclined to think, pessimistically, that “univer-
sity mathematics curricula are virtually immune to
change; in mathematical terms, we might say that the
mathematics curriculum is invariant under intellec-
tual revolutions” (Steen, 1989).

For all the difficulties inherent in technological
innovation in mathematics education, it is evident that
those involved in teaching mathematics to nonspecial-
ist students cannot ignore it, inasmuch as computer
software is ubiquitous in the professional practice of
engineers and is becoming a standard tool for engi-
neering students, for example in the form of special-
ist Computer-Aided Design packages for the different
engineering professions, or structural analysis pack-
ages in civil engineering.
~ The case of structural analysis software is a good
illustration of the trends. Structural analysis is essen-
tially a deeply mathematical subject and is central to
the professional practice of a civil engineer, and thus
also central to his or her education. As part of the de-
sign process, the engineer needs to predict the behav-
ior of a proposed structure (the walls of a building,
a roof, a bridge, etc.). Before the advent of comput-
crs, the working life of an engineer, especially in the
early part of his or her career, would be dominated by
actually doing structural calculations using pen-and-
paper, and a Jarge part of the civil engineering degree
was therefore dedicated to giving students an under-
standing and fluency in a variety of calculational tech-
niques. For the majority of engineers today, all such
calculations will be done in practice using computer
software. The priority now for education is that stu-
dents may “do” little mathematics themselves in the
form of explicit calculation, yet they are likely to wuse
more mathematics than ever before, implicit within
computer software:

No longer do we have to grind through long calcula-
tions—the computer will do it for us. The challenge

has changed from the ability to do this to the ability to
interpret the meaning of mathematics to engineering
and herein lies the challenge and change of empha-
sis. (Blockley & Woodman, 2002, p. 14)

A typical structural analysis curriculum of 10 years
ago would begin with a solid dose of analytical theo-
Ty—using matrix algebra—followed later (perhaps in
the 2nd or 3rd year) by working with computer soft-
ware. Nowadays, work with computer software is likely
to come much earlier, and the place of learning ma-
trix algebra as a preparation for working with software
is becoming open to question.

What is the Purpose of Mathematics to an Engineer?

Structural analysis is just one of the analytically
based areas of engineering where the curriculum is
currently being debated and is evolving into new forms
(see, for example, Allen, 2000). In general, one can
see a tension between the traditional notion of “push-
ing” mathematical ideas into the engineering curricu-
lum and of “pulling” ideas from mathematics—that
is, the need for a particular piece of mathematics can
emerge where the engineering curriculum requires
it, rather than being pushed into the student prior to
having 2 meaningful context for it. Of course, this has
to be done in a systematic way-——mathematics cannot
in general be understood in a “just in time” fashion.

In university mathematics education, a strong ten-
dency remains to think that understanding of a math-
ematical technique must precede its application to the
engineering context. In the (precomputer) past, a
valid objection to any sort of pull-based mathematics
was the uncomfortable notion of anyone trying to use
a mathematical idea before knowing the techniques
of its application. Mathematicians have tended to re-
gard knowledge of techniques as an essential part of
what it means to understand an-idea and how to apply
it. What users of mathematics such as engineers are
wanting however, and it seems that mathematicians
will increasingly need to provide, is a form of pull-
based mathematics in which the use of mathemati-
cal software makes mathematical ideas usable, as in
the example of structural analysis above. Carefully
designed use of IT can make it possible for students
to use mathematical ideas tefore understanding tech-
niques, and to make this part of a genuinely rounded
mathematical learning experience (a few examples
are given in Kent & Noss, 2003}.

Itis worth considering at this point the whole ques-
tion of the purpose of mathematics to a (student) en-
gineer. Kent & Noss (2003) in a UK-based study found
widespread agreement across the civil engineering
profession about what is the desirable mathematical
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competence of a graduate: “Mathematics should instil
disciplined thinking and rigour in the development of
arguments based on assumption and simplification in
modelling, should teach the importance of controlled
approximation, and, above all, impress upon students
its value as a tool to be invoked when quantitative evi-
dence is needed to underpin assertion, hypothesis, or
sheer physical intuition” (Nethercot & Lloyd-Sniith,
quoted in Rent & Noss, 2003, p. 8). Whilst few would
dissent from such a description, there are certainly
significant questions about what meanings people at-
tach to the different terms, even, what is “mathemat-
ics”? It is notable in talking to experienced engineers
that the mathematics that is useful and relevant has in
many cases long since come to be thought of as part
of engineering, whereas mathematics that is nof used
is regarded as “mathematics.”

Again according to Kent and Noss’s (2003) sur-
vey, practicing engineers do not tend to regard math-
ematics as a problem area—contrary to the sometimes
obsessive concern of academics about the “mathemat-
jcs problem” (see above). Practitioners regard con-
fidence with mathematics as crucial for the majority
of engineers, and above all they require a balance of
skills across engineering teams. Different employers
require different balances, and even specialist analyti-
cal design consultancies in civil engineering reported
that they only require 10-20% of their engineers to
have specialist skills in analysis. '

In the past, engineers had to learn a lot of math-
ematics for practical purposes. At the same time, they
could be expected to absorb some understanding of
mathematics as a logical way of thinking, 2nd its impor-
tance as part of a practicing engineer’s expertise. The
availability of computer software for calculations has
undone this relationship between practical and theo-
retical aspects. The teaching of practical mathemat-
ics is becoming much more focused on the process of
modeling of engineering systems—this results in a de-
crease in the teaching of calculation techniques, but it
does not mean that all manual work with mathematics
could be replaced: The right balance must be found.
To teach mathematics as a way of thinking, a traditional
model exists in the use of formal mathematics—older
engineers do look back on courses in Euclidean geom-
etry in their schooldays as having significantly shaped
their development. It seems unlikely that formal georm-
etry can re-occupy such a dominant place in the school
mathematics curriculum (for one thing, there are too
many competing demands on the school curriculum),
and new models for this aspect of mathematics learn-
ing are not yet widely agreed. Indeed, is a logical way
of thinking only to be gained through studying “pure”

mathematics? Could the same kinds of analytical proh-
lem solving also be developed through, for example,
requiring all students to develop substantial skills in
(mathematical) computer programming? Certainly
in the school context this potential for computer pro-
gramming has long been advocated, most famously in
the case of the language Logo (see Cuoco et al., 1996;
Noss & Hoyles, 1996).

Modeling and the Development of “Problem Solving”
Curricula

Another emergent factor in engineering math-
ematics is the role of modeling. However, this should
be understood more broadly than it is sometimes in-
terpreted in undergraduate mathematics. Often, the
translation between the physical situation and the
mathematical analysis is regarded as a small part of
the task, whose focus is on the applied mathematics of
solving the equations in the model (in the worst cases,
the physical situation is but an excuse for students to
do a routine exercise in applied mathematics). Yet
the process of translation, which involves on the one
hand developing a mathematical model of the situ-
ation and on the other hand interpreting the math-
ematical analysis back into the context, is in general
a rather complex task, and is intimately related to the
issue of learning how to use (rather than how to do)
mathematics, which we suggested above is becoming
the focus of engineering mathematics education. See
Bissell and Dillon (2000) for an extremely perceptive
engineers’ view on the nature of modeling.

As discussed above, an analogous situation to this
lies in some aspects of applied mathematics teach-
ing, such as differential equations (see, for example,
Stephan & Rasmussen, 2002). As the use of differential
equations has been transformed by the availability of
mathematical software, both numerical and symbolic
(computer algebra systems), both a possibility and a
need has opened up to teach about equations differ-
ently, less focused on doing techniques of solving dif-
ferential equations, more focused on the meaning of
differential equations, in terms of their geometrical
structures and their domains of application.

One of the major trends of recent years in engi-
neering education generally that illustrates the issue
of modeling is 2 growing number of experiments with
various forms of problem-based learning (PBL). (A few
exceptional universities—such as Roskilde University
in Denmark—embraced this mode of learning 2 long
time ago, cf. Niss, 2001). The idea behind this is that
Jecture-based teaching is largely replaced by students
working on projects, usually in teams, and being as-
sessed through group-work and continuous assess-
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ment. The projects develop increasing complexity as
students progress from year to year. Problem-based
learning originated in the 1960s in medical educa-
tion, where it has since become increasingly common.
The appropriateness of PBL-has been criticized for
engineering studies because of its origins in medical
education: The argument goes that PBL is good for
fact-based knowledge, such as medicine, but is less
appropriate for an analytically based subject like en-
gineering (cf. Spencer-Chapman, 2000). Yet making
abstract analysis meaningful depends crucially on the
student making connections between engineering
and mathematics through solving problems (Kent &
Noss, 2003); just as in the case of differential equa-
tions mentioned above, meaning develops by pro-
viding activities for students to develop connections
within the subject (e.g., the geometrical structure of
differential equations), as well as making connections
to other subjects.

Statistics and Probability
at Post-Secondary Level

In this section we summarize the research carried
out in advanced stochastics, with particular emphasis
in the recent emergence of a statistics education re-
search community, which has some links but is almost
independent from the advanced mathematics educa-
tion research community. We reflect on the specific
characteristics of advanced stochastics and the poten-
tial research challenges that this area sets to educa-
tional research.

Many features described for the teaching of “ser-

vice mathematics” to engineers also apply to the case:

of statistics. As mentioned above, statistics is one of
the most widely taught topics at university level, where
itis mainly studied as a tool to solve problems in oth-
er fields. However, the variety of previous knowledge
and interests of the students involved is even larger
than in the case of service calculus, because statistics
is taught with almost no exception in all the university
majors, from engineering to education, geography,
psychology, biology, sociology, journalism, economics,
linguistics, and so on. There is also a general dissatis-
faction with the mathematically oriented approach to
tea.ching in traditional courses, which often empha-
size the teaching of formulas for calculating statistics
(e.g., correlation coefficients or confidence intervals)
without much concern towards the data context and
interpretative activities or simulations that could help
students improve their stochastic intuitions. In many
cases, the courses are overmathematized, which in-
volves meeting concepts of advanced stochastic think-
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ing for students who do not have any prior or concur-
rent experience of advanced aigebra or calculus.

Technology has also had a major impact in the
practice and development of statistics in expanding
the range of processes that statisticians and users of
statistics can employ to collect, analyze, and inter-
pret data and the amount and type of data they can
analyze. This has resulted in the development of new
statistical methods, such as exploratory or graphical
data analysis, resampling techniques, or data min-
ing and has facilitated the implementation of some
techniques that were previously difficult to make use
of, such as muitivariate or Bayesian analysis. This no
doubt has also influenced the increasing demand for
statistics education, inasmuch as many people can now
apply a method with scarce knowledge of the complex
mathematical calculation behind the userfriendly
software that is apparently easy to learn. For example,
an education or psychology student can easily enter
data in a computer, use statistical software to perform
a factor analysis in a few minutes, and give an intuitive
interpretation of the factors retained in terms of the
problem without knowing what an eigenvalue is, how
eigenvalues are extracted, or how the different rota-
tions of the components have been obtained.

Modeling and problem solving are also central to
the teaching of statistics to professionals. However, sta-
tistical problems are often open-ended or ill-defined
and have multiple possible solutions. Although model
abstraction is common to mathematics and statistics,
the context plays a fundamental role in guiding the
selection of a statistical model (delMas, 2004}, and
selecting the model is frequently harder than subse-
quent mathematical reasoning in working with the
model. Algebraic work on the model, for example, is
very limited, and although the processes of generaliz-
ing, classifying, conjecturing, inducing, analyzing, syn-
thesizing, and abstracting described by Dreyfus (1991)
for advanced mathematics still apply to statistics, the
meaning of representing, visualizing, or formalizing
is quite different. As we will argue later, representing
and visualizing apply mainly to the data and are used
to create meaning from these data, for example help-
ing to find an adequate model or identifying unex-
pected sources of variation. Formalizing in statistics
applies not just to the mathematical work with mod-
els, but to the definitions of units, variables, and cat-
egories for data analysis, or designing instruments to
measure them, which again are rooted in the context
of application. Whereas mathematical practice can be
removed from real-world context, statistics practice is
highly dependent on the problem context, and this
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dependence may lead to reasoning errors that are
hard to overcome.®

There is an interest and tradition for educational
innovation in the teaching of statistics, and this top-
ic is also taught at advanced level by lecturers with a
variety of backgrounds, mostly statisticians, but also
economists, health care professionals, engineers, psy-
chologists, or educators. Contrary to the case of en-
gineering, mathematicians or mathematics educators
teaching statistics are only a minority. This explains
the fact that, until very recently, research in advanced
stochastic teaching and learning has not attracted
mathematics educators and thus has had a small pres-
ence at, for example, the annual Psychology of Math-
ematics Education Conferences. Of course, this does
not mean that the teaching of advanced statistics is
without problems or that existing related research on
this theme is lacking.

A main difference compared with the teaching of
mathematics to engineers is the long tradition of edu-
cational research related to the teaching and learning
of statistics, and a substantial part of it has been carried
out outside the mathematics education community.
Research in stochastics thinking, teaching, and learn-
ing started during the 1950s with the pioneering work
by Piaget and Inhelder (1951) and has always had an
interdisciplinary character. As stated by Shaughnessy
(1992, p. 465): “The cross fertilization of research traditions
and methodologies in probability and statistics makes it one
of the theoretically richest branches in mathematics educa-
tion. " Different fields have contributed with various re-
search paradigms and theoretical frameworks, which
have been analyzed in different surveys of research,
such as Scholz (1991), Shaughnessy {1992), Jones and
. Thornton {2005), and other chapters in this Handbook.
Whilst research was still relatively scarce when the first
Handbook was published, compared with other areas
of mathematics it has experienced a notable growth
in the past 10 years. However, this has mainly concen-
trated in elementary and secondary school levels, per-
haps unsurprising given the much greater emphasis
that recent new curricula for these levels have given to
statistics and probability.

Research into advanced stochastic reasoning has
interested psychologists for decades. Because psychol-
ogy is an experimental science that heavily relies on
statistics, the efforts to justify the scientific character
of this field have led psychologists to examine the va-

lidity of their research paradigms, including the use olf_
statistics in empirical research. An amazing obserys.
tion is that statistical inference and particularly signifi:
* cance tests were found to be misunderstood and mjs. -
used by psychologists and experimental researchery

at large over 30 years ago, and that the situation sti]] .'

persists in spite of strong debates ever since (Harlow,

Mulaik, & Steiger, 1997; Morrison & Henkel, 197)), .
Moreover, researchers in the field of reasoning under

uncertainty have suggested that, even after statistical
instruction, students and professionals tend to con-
tinue to make erroneous stochastic judgemenis and
decisions (Kahneman, Slovic, & Tversky, 1982). The
diffusion of these research results and the increasing.
ly easy access to powerful and user-friendly computers
and statistical software, which save teaching time pre-
viously devoted to laborious calculations and allow a
more intuitive approach to statistics (more real data,
active learning, problem solving, and use of technolo-
gy to illustrate abstract concepts through simulation)
have led statistics lecturers to increase their concern
towards didactical problems (see, e.g., Moore, 1997).
Consequently, 2 general effort exists to create curricu-
lar materials and to evaluate teaching and learning
at university level. The influence of the International
Association for Statistical Education (IASE) created

in 1991 serves to establish links among the different

communities interested in statistics education and to
support a more systematic research program. Below
we summarize these contributions.

Psychological Research on Advanced Stochastic Thinking
Different theoretical approaches in the field of
psychology have tried to explain people’s poor per-
formance in probability and statistical tasks, which
have been widely documented in relation to different
concepts that can be considered as part of advanced
stochastics, such as randomness, compound probabil-
ity, association in contingency tables, correlation, con-
ditional probabilities, Bayes problems, sampling, and

the test of hypotheses. Traditionally, decisions under

uncertainty are defined by incomplete information
about the situation, that is, the possible alternatives
or their outcomes. are only known (at best) in term
of probabilities, a feature of many professional tasks
(e.g., medical diagnosis, jury verdict, educational as-
sessment). A fallacy is the result of a cognitive process
that leads to an incorrect conclusion and may consist

® Por example, a very simple rule is computing the probability of the conjunction of two events in terms of simple and conditional
probabilities: P(AnB) = P(A) - P(BIA) =P(B) - P{AIB). A consequence of this rule is that the-probability P(AMB) cannot be higher than

the probabilities of either of the two individual events. However,

when P(A) is very high and P(B) small, people forget the rule and

consider P(ANB) > P(B). This behavior was first described by Tversky and Kahneman (1983) and termed the conjunction fafincy. So, for
example students who are asked whether it is more likely that the government will increase the number of grants or that the government
will increase the number of grants and the salary of members of parliament will consider more likely the second event.
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of the application of an inadequate model or incorrect
application of intuitive rules of inference. In trying to
explain. the mechanisms leading to a fallacy, Kahne-
man and his collaborators developed the heuristics and
biases program (Kahneman, Slovic, & Tversky, 1982),
which was the dominant paradigm in the early eighties
and is still very influential. This assumes that people
do not follow the normative mathematical rules that
guide formal scientific inference when they make a
decision under uncertainty and that, instead, they use
simpler judgmental heuristics. Heuristics reduce the
complex tasks of assessing probabilities and predict-
ing values to simpler judgmental operations and are
in general useful; however they sometimes cause seri-
ous and systematic errors and are resistant to change.
For example in the representativeness heuristics, people
tend to estimate the likelihood for an event on the
basis of how well it represents some aspects of the par-
ent population. An associated fallacy that has been
termed belief in the law of smail numbers is the belief that
even small samples should exactly reflect all the char-
acteristics in the population distribution. Then for ex-
ample a mother of two boys may incorrectly assume
that the Iikelihood of having a third baby who is a girl
is greater than the likelihood of having a baby boy,
because a family with 2 boys and a girl is more repre-
sentative of the general population.

A huge amount of research in stochastics educa-
tion at both undergraduate and advanced level has
been based on the idea of heuristics (see a summary
in Shaughnessy, 1992). Large-scale studies carried out
by psychologists showed misconceptions related to
these heuristics, in which participants assumed that
sampling distributions (distribution of the value of the
mean and other parameters in repeated samples from
the same population) were independent of the sam-
ple size, whereas in mathematical theory the spread
of these distributions should be inversely related to
the sample size. Direct consequences of this for the
practice of statistics are that users have an overconfi-
dence in the results of statistical tests, underestimate
the width of confidence intervals, and expect a very
close result in replication of the experiment, even with
a small sample. Recent research on heuristics at ad-
vanced fevel includes studies on: assessment (Garfield,
2003; Hirsch & O’Donnell, 2001), the effect of teach-
- ing experiments on the use of heuristics (e.g., Barra-
Bués, 2002; Pfannkuch & Brown, 1996), and miscon-
ceptions related to concepts such as randomness (Falk
& Konold, 1997} in terms of heuristics or providing al-
ternative explanations for incorrect responses to tasks
proposed in research about heuristics. For example,
Konold (1991) suggested that students might confuse
frequentist probability, which is objective and refers to

the frequency of occurrence of an event in relation to
a population, with epistemic (subjective) probability
referred only to an isolated event. Then they might
confuse the task of assigning a frequentist probabil-
ity with the task of predicting the next outcome (the
outcome approack) in a random experiment. This also
_involves a deterministic view of an uncertain situation,
because in the outcome approach, participants tend
to rely more on causal explanations rather than accept
explanations due to chance and variability.

A different theoretical model in the psychology
of decision is the abstract—rules framework (Nisbett &
Ross, 1980) in which people are assumed to acquire
a form of correct statistical reasoning and develop in-
tuitive versions of abstract statistical rules, such as the
law of large numbers, which are well adapted to deal
with a wide range of problems in everyday life, for ex-
ample, estimating the average time spent to perform
2 repetitive task or the approximate cost of the shop-
ping in a supermarket, but the rules fail when applied
beyond that range. Such rules are used to solve statis-
tical problems, in which one recognizes some cues in
the problematic situation. With respect to training in
statistical reasoning the suggestion is that the quality
of human inferences and judgments can be improved
via statistical instruction: “Many of the inferential
principles central to the education we are proposing
can be appreciated fully only if one has been exposed
to some elementary statistics and probability theory”
(Nisbett & Ross, 1980, p. 281), although the sugges-
tion is that statistics teaching should take into account
students’ intuitive strategies and errors. Moreover, for
these authors, even brief formal training in inferen-
tial rules may enhance their use for reasoning about
chance events; either teaching statistical rules or
teaching by having students solve example problems
would work. As regards training in conditional logic
or conditional probability students need to be trained
simultaneously in abstract logical rules and in prob-
lem-solving strategies. Problem solving is improved,
according to these authors, when the sample space is
clearly defined, people recognize the role of chance
in the experiment, and the context forces the person
to think statistically.

A more recent theoretical framework is the adaptive
algorithms approach (Cosmides & Tooby, 1996; Giger
enzer, 1994}, which supposes that people possess evo-
lutionarily acquired cognitive algorithms that serve to
solve complex probability problems, such as conditional
probability or problems involving Bayes theorem. Adap-
tive algorithms serve to solve adaptive problems (such
as finding food, avoiding predation, or communicating)
and take a long time to be shaped, due to natural selec-
tion. Because adaptive algorithms are shaped by natural
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environments they are more effective when the tasks are
presented in a format close to how data are perceived
and remembered in ordinary life. According to this the-
ory people should have litde difficulty in solving statisti-
cal tasks if the probability data are presented in a natural
format of absolute frequencies instead of using rates or
percentages (Sedlmeier, 1999). Although the percent
age, rate, or frequency representations of probability
values in the problem are mathematically equivalent,
inasmuch as they can be mapped onto each other, they
might be not psychologically equivalent. Gigerenzer
(1996) argued that the frequency representation makes
some cognitive illusions in statistics disappear and that
the cognitive algorithm used to solve the same problem
changes with the information representation.”
Sedlmeier (1999) analyzed and summarized re-
cent teaching experiments carried out by psycholo-
gists that follow either the abstract-rules or adaptive-
algorithms theories and involve the use of computers.
The results of these experiments favor the adaptive-
algorithms approach as an explanation for people’s
performance in stochastic tasks and suggest that statis-
tical training is effective if students are taught to trans-
late statistical tasks to an adequate format, including
tree diagrams and absolute frequencies. These experi-
ments have concerned areas such as compound prob-
abilities, conditional probability, the Bayes theorem,
and the impact of sample size on the sampling dis-
tributions. However, learning is assessed through par-
ticipants’ performance to tasks that are very close to
those used in the training, so evaluating the exient to
which students could transfer this knowledge to wider
types of problems is difficult. Although this research
provides empirical information and potential theoret-
ical explanations for students’ difficulties in advanced
stochastics, a large amount of work still must be done
by mathematics and statistics educators to integrate
these results and to use them to design and evaluate
teaching sequences in natural settings where students
are expected to meet wider curricular requirements.

The Mathematics Education Approach
The approach of mathematics educators is rather
different from that taken by psychologists and has fol-

lowed the research paradigms and theoretical frame.
works in mathematics education. The mathermaticy)
and cpistemological analyses reveal that the complexity
of concepts, tasks, and students’ responses investigated
by psychologists is often greater than has been assumeg
in psychological research and suggests the need for re-
analyzing them from a mathematical perspective; for
example, centering on isolated types of tasks does not
always reveal in depth the students’ understanding of
a concept, inasmuch as responses are sometimes very
dependent on the task variables. Moreover, theoretica]
constructs taken from mathematics education can con-
tribute to a different perspective for the same phenom-
ena. Take, for example, the concept of correlation, a
field that has been extensively studied by psychologists,
including Inhelder and Piaget (1955) who considered
that the evolutionary development of the concepts of
correlation and probability are related and that under-
standing correlation requires prior comprehension of
proportionality, probability, and combinatorics. In these
experiments participants are presented two-way tables
(two rows and two columns) in which a sample subjects
are classified according to the presence-absence of two
qualitative attributes, such as eye and hair color (dark
or fair hair, brown or blue eyes). Participants are asked
to judge if there is a relationship between the two attri-
butes (judgment of correlation) in these 2 X 2 contin-
gency tables and to justify the procedure to reach their
conclusion. In Table 22.1 we describe the data in this
type of problem, where a, b, ¢ and d represent absolute
frequencies.

Table 22.1 Typical Format fora2x 2
Contingency Table

B Ngt B Total
A a b a+b
Not A c d c+d
Total a+c b+d

a+b+c+d

Piaget and Inhelder found that some adolescents
who are able to compute single probabilities only ana-

1 For example, in the following Problem 1 (Eddy, 1982) probability data are given in percentages and should be solved with the help of Bayes
theorem. Giving the data in a format of absolute frequencies (Problem 2), it transforms to a simpler problem that can be solved by applying
the Laplace rule: It is easy to see that out of 107 women with positive test results (8 + 99) only 8 of them will have breast cancer.

Problem 1. The probability of breast cancer is 1% for a woman at age 40 who participates in routine screening. If a woman has breast
cancer, the probability is 80% that she will have a positive mammogram. If a woman does not have breast cancer, the probability is 10%
that she will still have a positive mammogram. Imagine a woman from this age group with a pesitive mammogram. What is the probability

that she actually has breast cancer? :

Problem 2. Ten out of every 1,000 women at age 40 who participate in routine screening have breast cancer. Of these 10 women with breast
cancer, 8 will have a positive mammegram. Of the remaining 990 women without breast cancer, 99 will still have a positive mammogram.
Imagine a woman from this age group with a positive mammogram. What is the probability that she actually has breast cancer?
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lyze the cases in cell fa] in Table 22.1 (presence-pres-
ence of the two characters A and B). When they admit
that the cases in cell [d] (absence-absence) are also
related to the existence of correlation, they do not un-
derstand that cells [a] and [d] have the same meaning
concerning the association, and they only compare
[a] with [b] or [c] with [d] instead. Understanding

correlation requires considering quantities (a + d) as.

favorable to the association and (b + ¢} as opposed to
it. The correct strategy should use the comparison of
two probabilities P(B/A) and P(B/NotA), that is
a . ¢
a+b

c+d

According to Piaget and Inhelder, recognition of this
fact only happens at 15 years of age. Following Piaget
and Inhelder, several psychologists have studied the
Jjudgment of association in 2 X 2 contingency tables in
adults, using various kinds of tasks. Other psycholo-
gists used instead two numerical variables and differ-
ent numerical, verbal, or graphical representation of

data. As a consequence of all this research, it has been

noted that participants perform poorly when estab-
lishing correlation (see Beyth-Marom, 1982, for a sur-
vey) and people frequently use their previous theories
about the context of a problem when judging associa-
tion. The general conclusion is that when data do not
coincide with these expectations a cognitive conflict
affects accuracy in the perception of correlation (Jen-
nings, Amabile, & Ross, 1982).

Estepa and his collaborators began from these
results and, after a mathematical and epistemological
analysis of the concept of correlation, designed a ques-
tionnaire including a wider range of open-response
tasks to give an alternative explanation of pre-university
students’ strategies and judgments in terms of miscon-
-egptions regarding correlation (Batanero, Estepa,-Go-
dino, & Green, 1996; Estepa, 1993). In the determinist
conception of association, some students expect that
correlated variables should be linked by a mathemati-
cal function; students with a unidirectional conception
of association only perceive direct association (posi-
tive sign of the correlation coefficient) and interpret
inverse association (negative sign) as independence;
causal conception consists of assuming that correlation
always involves a cause-and-effect relationship between
the variables, and in the local conception students base
their judgment on only part of the data (e.g., they only
use one cell in 2 X 2 contingency tables). These types
of conceptions have been confirmed in later research
(Morris, 1997, 1999). Anocther finding was that some
mathematical concepts might constitute an obstacle
when learning correlation, in which case they receive
different interpretations. For example, some students

believe a correlation coefficient of 0.7 indicates a
smaller degree of dependence than a correlation coef-
ficient of 0.1 because —0.7 < 0.1 in the usual ordering of
real numbers, whereas in fact 0.7 indicates a stronger
dependency than 0.1.

Estepa and his collaborators organized two teach-
ing experiments based on computer learning environments
(in the sense of Biehler, 1994, 1997), that is, integrat-
ed instructional settings that allow the teacher and a
group of students to work with statistical software, data
sets, and related problems as well as with a selection
of statistical concepts and procedures. The research-
ers found general improvement in students’ strategies
and conceptions after teaching, although the unidirec-
tional and causal misconceptions concerning statistical
association were harder to eradicate. Using qualitative
methods, such as observation, interviews, and the anal-
ysis of the students’ interaction with the computer, they
documented specific acls of understanding (following
Sierpinska, 1994) of correlation (Batanero, Godino,
& Lstepa, 1998; Estepa, 1993). For example, students
must realize that the study of the association between two
variables has to be made in terms of relative frequencies; how-
ever, in the first teaching session the students tried to
solve the problems in terms of absolute frequencies. Al-
though the lecturer pointed out this mistake to them at
the end of that session, the same incorrect procedure
appeared recurrently for the same students for several
sessions, until the students overcame this difficulty. An-
other example of an act of understanding was realizing
that from the same absolule frequency in a contingency table
cell one can comnute two different relative conditional frequen-
cies (conditioning by row or column), and the role of the two
events in the conditional relative frequency is not interchange-
able. Students’ difficulties in discriminating between
the probabilities P(A/B) and P(B/A) have previously
been described (e.g., Falk, 1986). Again, this was a
recurrent difficulty for the students throughout the
teaching experiment.

Other researchers have taken mathematics educa-
tion frameworks to organize research on topics that
have scarcely attracted psychologists in complex ex-
perimental settings. For example Batanero, Tauber,
and Sdanchez (2004) used a theoretical framework that
incorporates ontological, anthropological, and semi-
otic ideas {Godino, 2002; Godino & Batanero, 1998)
to describe the evolution of students’ understanding
of the normal distribution in a statistics course based
on intensive use of computers. In the theoretical mod-
el used, the meaning (understanding) of any math-
ematical object is conceived as a complex system, that
contains different types of interrelated elements: a)
problems and situations from which the object emerg-
es, such as fitting a curve to a histogram for empirical

I
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data distributions or approximating the binomial or
Poisson distributions; b) representations of data and
concepts, for example, histograms or density curves,
verbal and algebraic representations of the normal
distribution; ¢} procedures and strategies to solve the
problem, such as computing probabilities under the
curve, computing standard scores, and critical values:
d) definitions and properties, for example, symmetry
of the normal distribution, horizontal asymptote, ar-
eas above and below the mean, meanings of param-
eters; and €) arguments and proofs, including deduc-
tive and informal arguments. Godino and Batanero
(1998) argued that the understanding of a concept
emerges from a person’s meaningful practices linked
to repeated solution of problems that are specific to
that concept. Mathematical problems promote and
contextualize mathematical activity and, together with
actions, constitute the praxemic or phenomenologi-
cal component of mathematics (praxis) as proposed
by Chevallard (1997). The three remaining compo-
nents {concept-definitions, properties, arguments)
are produced by reflective practice and constitute the
theoretical or discursive component (loges). Godino
and Batanero also described different dual facets or
dimensions of mathematical knowledge, in particular
distinguishing between the personaland the institutional
meaning to differentiate between the meaning that for
a given concept has been proposed or fixed in a specific
institution and the meaning given to the concept by a
particular person in the institution.

This theoretical framework was specially suited
to describe the complexity of understanding the nor-
mal distribution in Batanero, Tauber, and Sinchez’s
(2004) research, because the understanding of the
normal distribution in their experiment was based
on the students’ previous knowledge about many in-
terrelated concepts such as statistic and random vari-
ables, frequency and probability distribution, param-
eter and statistics, center and spread, symmetry and
kurtosis, histogram and density curve, areas under
the normal curve, mathematical model and empiri-
cal data, their different representations, procedures,
and properties. The teaching was based on intensive
solving of real problems in which students analyzed
different real data sets taken from fields in their ar-
eas of interest, which served to gradually suggest to
them to reflect about the different elements of mean-
ing of the normal distribution. The idea of different
institutional meanings also describes well the changes
in meaning and understanding implied by the use of
computers: different types of problems (starting from
real, multivariate data sets related to a problematic
situation that the students should model), represen-
tations (wider and quicker availability of interactive

dynamic graphs, tables, and numerical summaries),
procedures (knowledge of software options and inter.
pretative abilities substituted for classical probabiliy
coraputations); graphical and iconic language replac-
ing algebraic manipulation, and types of proof (simuy-
lation and visualization, instead of deductive proof).

Finally the framework served to picture the gen-
eral tendencies in the students’ personal meaning for
the normal distribution after the instruction, as wel}
as the variety of these meanings, and to identify main
agreements and differences with the intended inss.
tutional meaning. At the end of the teaching students
were given written questionnaires to evaluate specific
understanding about particular properties, represen-
tations, and procedures and an open-ended task, to
be solved with the computer that referred to a data
file the students had not seen before. The students
were to chose a variable that could be well fitted by
a normal distribution, then explain and justify their
responses in detail (the file contained data from a reai
context with 10 different qualitative and quantitative
variables, only 2 of which were acceptable solutions
to the problem). The students were given freedom to
use any resource of the software (statistical graphs or
analysis) to support their choice. Quantitative analysis
of responses to questionnaires and semiotic analysis
of the students’ written protocols in the open tasks as
well as interviews with a small number of students were
used to describe the students’ correct and incorrect
reasoning about the normal distribution. For exam-
ple, many students could relate the jdea of symmetry
to skewness coefficient or to relative position of mean,
median, and mode; they were able to compare the
empirical histogram and density curve shapes to the
theoretical pattern in a normal curve and relate the
various graphic representations and data summaries
to the geometrical properties of normal distribution.
Even when the majority of students learnt to use the
software, some of them had difficulties in interpreting
areas in frequency histograms produced by the soft-
ware, in computing areas under the normal curve, or
in discriminating between the empirical data and the
mathematical model (normal curve).

Influence from Statistics

Another strong influence on research comes from
the field of statistics, where interest in education arose
especially since the creation in 1949 of an Education
Committee by the International Statistical Institnte
(ISI), through which the ISI promotes the training of
official statisticians in developing countries and has
organized a series of Round Table Conferences on
specific educational problems since 1973 (Vere-Jones,
1997} The International Conferences on Teaching
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Statistics (ICOTS) were started in 1982 by the ISI and
have continued every 4 years. In 1991 the TASE was
created as a separate section of the ISI and took over
the organization of these conferences. The journals
Teaching Statistics, first published in 1979, and Journal
of Statistics Education, started in 1993, soon became
important tools to improve statistics education all
over the world. This activity complemented the edu-
cational sessions at international and national statisti-
cal conferences (e.g., in the biannual Sessions of the
International Statistical Institute or in the American
Statistical Education Conferences) as well as the Sto-
chastic Thinking Reasoning and Literacy Research
Forum started in 1999. With regard to the teaching,
learning, and understanding of stochastics at post-sec-
ondary level these conference activities promoted a
large and varied number of teaching experiences, and
many suggestions were published in proceedings and
Jjournals. At the same time, some systematic research
has been progressively emerging under the influence
of the JASE and of several funded projects and initia-
tives by the American Statistical Association (e.g., the
Undergraduate Statistics Education Initiative, USEL2
and the Consortium for the Advancement of Under-
graduate Statistics Education, CAUSE®).

One example is the research carried out by Gar-
field, del Mas, and Chance who developed a piece of
didactic software (Sampling Distribution) and comple-
mentary instructional materials (pretest and posttest,
instructional objectives, activities) to assess students’
previous misconceptions, support discovery and ex-
ploration of inferential concepts, and assess change
after instruction (Garfield, del Mas, & Chance, 1997).
The software allows student to choose among a variety
of possible distributions for a continuous variable in a
population, including nonstandard models of distribu-
tions. In addition it provides different windows where
the student can simulate the drawing of samples (for
any size and number of samples) from the specified

- population and visualize the sample outcomes as well

as the values of some statistics (e.g., mean, median,
variance} in the different samples (sample statistics).
From these, there is the possibility to graph the set
of different values for these sample statistics to get an

“empirical sampling distribution for the statistics. Stu-

dents can add new samples to their previous results
little by little, in order to discover the long-run pat-
terns in the empirical sampling distribution and un-
derstand the features in the theoretical sampling dis-
tribution (distribution of all the possible values of the
statistics for a given population and sample size). For

#® http://www.amstat.org/education/index.cfm?fuseaction=usei
u http://www.causeweb.org/

example, they can “discover” for themselves the og
tral limit theorem, according to which the sampling
distribution of mean and other statistics will approach
to a normal distribution for moderate sample sizes (n
> 30) even for nonsymmetrical population distribu-
tions. They can see how the approximation improves
with the sample size, and that as the spread in the
,sampling distribution decreases the average (value of
the sample statistics) approaches to the value of the
population parameter.

The same authors carried out a teaching experi-
ment with three groups of students at the university in-
troductory level (delMas, Garfield, & Chance, 1999),
The students were supposed to have read a chapter
on sampling distribution and the central limit theo-
rem before engaging with hands-on simulation using
the software. Class discussions served to compare the
shape, center, and spread of empirical sampling dis-
tributions for different sample sizes and population
distributions and whether empirical resulis agreed
with what was expected in the central limit theorem.
The authors were surprised that after the first series
of experiments many of their students still showed
serious misconceptions. For example, the variability
the students expected in the distribution was not con-
sistent with the sample size, and they did not under
stand that the sampling distribution would resemble
a normal distribution with increasing sample sizes.
Much better results were obtained when the authors
followed a model of learning through conceptual
change in which students were asked to test their pre-
dictions and confront their misconceptions, following
a constructivist model of learning. The authors here
concluded that students with misconceptions have to
experience contradictory evidence and reflect on this
contradiction with their previous expectations before
they change their views about random phenomena.

To gather more detailed information about stu-
dents’ reasoning they carried out several guided inter-
views that suggested a model of developmental stages
in students’ statistical reasoning: idiosyncratic, ver
bal, transitional, procedural, and integrated process
reasoning (Chance, delMas, & Garfield, 2004), based
on work by neo-Piagetian cognitive researchers (e.g.,
Biggs & Collis, 1991) who have examined the process
of cognitive development in everyday and school con-
texts. In this model students progress from knowing
words and symbols without understanding their mean-
ing (idiosyncratic level) to a substantial understand-
ing of the process of sampling and sampling distribu-
tions (process level) in a series of stages. Similar mod-
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els of developmental stages have also been proposed
by some mathematics educators for some elementary
stochastics concepts, in research carried out with pri-
mary and secondary school students (Jones, Langrall,
Mooney, & Thornton, 2004). Finally, we should note
this kind of research focusing on the identification on
misconceptions and developmental stages is rather
classical from a mathematics education point of view.

Although many different theoretical concepts in
research carried out by statisticians are taken from psy-
chology or mathematics education, some statisticians
are trying to develop specific frameworks to describe
statistical thinking as a specific’ type of thinking that
recognizes the variation around us and includes a se-
ries of interconnected processes, aimed at identifying,
analyzing, quantifying, controlling, and reducing this
variation in order to improve or inform decisions and
actions in many different fields (Snee, 1990). A nota-
ble example is the theoretical framework developed by
Wild and Pfannkuch (1999) and Pfannkuch and Wild
(2004), who conducted qualitative research on the ac-
tivities carried out by students and professionals when
engaged in statistical investigations from which the
authors developed a complex four-dimensional frame-
work including four components. The first component
is termed the statistical investigation eycle PFDAC (Prob-
lem, Planning, Data, Analysis, Conclusion} and describes
the activities carried out when identifying and solving

a statistical problem that is embedded in a wider con-

textual problem. This cycle includes identifying and
setting of the problem, planning for its solution, col-
lecting data, data analysis, and reaching conclusions.
Secondly there is an interrogative cycle, which is a ge-
neric process in statistical problem solving consisting
in generating possibilities for causes or explanations,
seeking or recalling information, interpreting, trans-

lating or comparing information, criticizing this infor-

mation from both internal and external points of view,
and judging the reliability or usefulness of the informa-
tion. The third component in the model describes the
types of thinking present in statistical problem solving.
In addition to strategic thinking the authors define
fundamental modes of stochastic thinking, which in-
clude recognizing the need for data, transnumeration
(numerical transformation to facilitate understand-
ing, for example, classifying, coding, or representing
data), identifying, explaining controlling and measur-
ing variation, use of mathematical models, and synthe-
sis of statistical and contextual knowledge. Finally the
model describes a series of dispositions, such as curios-
ity, imagination, or skepticism. Following the publica-
tion of the Wild and Pfannkuch paper a number of
research projects have focused on teaching or assess-
ing statistical reasoning and its several components as

a whole. For example Pfannkuch, Rubick, and chﬁ
(2002) described how students use transnumeration
or perception of variation to build up recognition ang
understanding of relatonships of variables in smgy
data sets. Another example is the research by Biehjep
(2005) who analyzed about 60 students’ statistica] proj-
ects and used Wild and Pfannkuch’s model to develg
an assessment scheme and a project guide to improve
the quality of these projects.

The Challenges of Advanced Stochastics

The above summary of research suggests that
probability and statistics pose a number of important
challenges to research on mathematics thinking and
learning at postsecondary level. First, the existing
research has been carried out by different scientific
communities, and not just by mathematics educa-
tors, and for this reason the sources of information
are widespread and not always easily available. At the
same time, the diversity of research problems and ap-
proaches is very wide, something that is also common
for undergraduate stochastics. Some research agen-
das posed by Shaughnessy (1992} and Shaughnessy,
Garfield, and Greer (1996}, as well as the creation of
the Statistics Education Research Journalwith the specific
purpose to promote research show a tendency to uni-
fication and linkage of the isolated pieces of research
towards developing a more general knowledge about
statistical education. However, the influence from
philosophical views about randomness, probability,
and statistical inference that still continue today is
reflected in stochastics teaching and research: “in the
field of probability there continues an ongoing fierce debaie
on the foundations, even though for pragmatic reasons only,
this debate has calmed down in recent times” {Borovenik
& Peard, 1996, p. 239). These different views influ-
ence the role given to probability in the curriculum,
from being the central core, to trying to teach statis-
tics without resort to probability (focus on exploratory
data analysis only) or favoring classical, Bayesian, or
mathematical-abstract approaches to inference.

Secondly, in the case of statistics, the distinc-
tion between advanced and elementary topics re-
mains very fuzzy, inasmuch as current curricula in
many countries include ideas about association and
inference in secondary school alongside situations
that require mature stochastic thinking for correct
interpretation, such as voting, investment, research
planning, or quality control, topics that increasingly
form part of the information to which many citizens
and professionals are exposed. So, whereas advanced
mathematical thinking tends to be used only formally
and after some systematic training, advanced stochas-
tic thinking is now being formally or informally used
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by many people with little formal training in either
mathematics or stochastics. Moreover some appar-
ently simple concepts, such as randomness, that are
taken for granted in elementary courses are in fact
very complex. For example, judging whether a se-
quence of outcomes is likely to have been randomly
generated involves being able to measure a number
of parameters including relative frequency, length
and distribution of runs, variation found in subsets,
estimating probabilities, and so on. These skills are
frequently taught in school; however research in both
psychology and education has shown frequent errors

_and misconceptions related to such simple ideas as

probability, average, and distribution. Furthermore,
because no random sequence of outcomes exactly
fits the expected patterns suggested by probability
theory, judging randomness in a particular situation
also requires an understanding of hypothesis-testing
logic and sampling distribution features. These are
both advanced stochastic ideas with which students
have many difficulties. Moreover randomness is as-
sumed in building a sampling-distribution or in hy-
pothesis testing, so a sound understanding of these
two concepts in turn actually rests on the idea of ran-
domness (thus creating a circular situation).

Stochastics is a field in which the need to present
advanced concepts to a wide audience of students with
varied backgrounds, interests, and capacities is urgent,
given the implications of poor stochastic thinking in
many fields of human activity. For example, recom-
mendations (o substitute or complement statistical
tests with confidence intervals (e.g., Wilkinson, 1999)
do not take into account the fact that their appealing
feature is based on a fundamental misunderstanding
(Lecoutre, 1998), which consists of thinking of the

- paratneters as random variables and assuming that

confidence intervals contain the parameters with a
specified probability. Such interpretation is incorrect
in a classical inferential framework, although it is ac-
ceptable in Bayesian statistics. For this reason some
researchers (c.g., Lecoutre & Lecoutre, 2001) are
suggesting to change the practice of statistics towards
Bayesian methods and suggest that Bayes’s thinking

“is more intuitive than frequentist probability for stu-

dents and better reflects students’ everyday thinking
about uncertainty. Reported results from research fo-
cused on teaching Bayesian statistics are limited to a
few cases (Albert, 2000), and the decision to change
from classical to Bayesian approach is also dependent
on researchers’ own objective or subjective views of
probability. The wide research done on students’
and professionals’ misunderstanding and misuse of
advanced “statistics should be complemented by a
similar effort in designing and evaluating teaching ex-

periments oriented to help students and researchers
overcome these difficulties. In this sense, statistics and
probability can be a paradigm for finding ways and ap-
proaches to introduce advanced mathematical ideas
to wide audiences and to rethink the very meaning of
what is advanced mathematical thinking.

CONCLUSION

In this chapter, we have tried to synthesize the evolu-
tion of research on mathematics thinking and learn-
ing at post-secondary level since the first Handbook was
published in 1992, and to analyze its most important
advances, their potential, and limit for understand-
ing and improving teaching and learning processes at
this advanced level. This evolution, which has been
fostered by both internal and external factors, has
not obeyed a simple dynamic, and the multiplicity of
its facets reflects both the intrinsic diversity of educa-
tional research-and- the-diversity-of the-changes-that-
have affected postsecondary education during the
last decade. Some of these evolutions were highly pre-
dictable, such as the development of the several theo-
ries of reification focusing on process-object duality;
the increasing attention paid to the semiotic dimen-
sion of mathematical activity and to the essential role
played by connections between representations, set-
tings, and perspectives in mathematical thinking and
learning; and the increasing influence taken by so-
ciocultural and anthropological approaches towards
learning processes. Others were less predictable, such
as the increasing theoretical influence of current de-
velopments in cognitive sciences and embodied cog-
nition, the rapid changes and growth in mathemat-
cal practice fostered by information and communi-
cation technologies, the reflection of these changes
in post-secondary education mathematical curricula
that today oblige educational researchers to expand
their privileged fields of investigation, the increasing
demand of advanced mathematics learning by var-
ied types of students, and the interest in research on
teaching and learning mathematics from a variety of
disciplines (not just in mathematics education). All
these evolutions make the landscape of research on
mathematics thinking and learning at post-secondary
level today something much more diverse and richer
than was the case about 10 years ago.

Looking at what has been achieved, we have the
feeling that the research initiated in the Advanced
Mathematical Thinking working group of PME in
this area, in spite of the diversity of its developments,
has avoided a fractionalization of its perspectives and
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been able to integrate its previous achievements into
complementary and coherent constructs, as we have
tried to show in the first parts of this chapter. This cer-
tainly provides researchers with a strong and mature
basis for addressing the important challenges that re-
search has to face today.

More and more, however, the evolution of post-
secondary education obliges us to reconsider the an-
swers we have given to fundamental epistemological

issues about the nature of mathematics, and the nature -

of mathematical learning and thinking. These funda-
mental issues cannot be discussed without taking into
account the current reality of mathematical practices,
or by considering only the practice of pure mathemati-
cians working in traditional fields. Postsecondary edu-
cational research has from this point of view a specific
epistemological role to play in educational research
thanks to its proximity with the professional world of
mathematics. The increasing importance taken in post-
secondary mathematics education by service courses
faces us with the necessity of taking a wider perspec-

tive. As has been shown in the fourth part of this chap-

ter, we are pushed and questioned by the evolution of
mathematical practices in professional fields such as
engineering. In the case of statistics, we observe a pro-
gressive separation of mathematics from the applica-
tions of statistics that originates in the fact that statistics
has changed much more rapidly than mathematics, is
much more dependent on the context and on informa-

‘tion technology, and is usually taught at postsecond-

ary level by lecturers who are seldom mathematicians.
At the same time, an increasing amount of research is
being carried out in advanced stochastics outside the
mathematics education community.

Technology has deeply changed professional prac-
tices and mathematical needs and as a consequence
changed what has to be learnt and how it can be learnt.
As has been argued for the case of stochastics and en-
gineering, these changes oblige us to see in technology
more than an educational help, but something consti-
tutive of mathematical practices, and moreover having
the effect of changing mathematical practices as well as
changing the meaning of mathematical objects. This
has an impact on the learning processes and obliges
us also to consider forms of and progressions in learn-
ing that are different from the usual ones. At the same
time these changed practices should support ways for
students with a limited mathematical background to
make reasonable sense and use of the very sophisticat-
ed mathematics that are implemented in the technol-
ogy they use, thus producing new, more intuitive mean-
ings for these mathematical objects.

From the theoretical point of view, researchers in
these new research fields have taken into account only

a very limited number of the theoretical concepts and
paradigms developed by the post-secondary mathemag.
ics education community. Therefore the study of the
extent to which these frameworks can describe the
learning of service mathematics or the learning of ad-
vanced stochastics or how these frameworks should be
complemented with other constructs specific to these
fields is still an open challenge for researchers.

Thanks to the global evolution of theoretical

frames towards sociocultural and anthropological

perspectives, researchers are certainly today better
equipped for addressing this issue of mathematical
practices, taking into account their different compo-
nents, both explicit and tacit, in order to analyze their
potential cognitive effects. This evolution has also a
corollary that any consideration of learning processes
is necessarily relative. Knowledge emerges from prac-
tices, and the learning processes one can access are
those that are made possible by the existing practices.
‘We have thus to be aware that the answers we can pro-
vide to the questions at stake are not absolute; they
depend on the current state of educational practice.
Research has certainly to pay more attention to these
dependences than it has done in the past. This makes
it necessary to explore more systematically than has
been done before what is Jearnt and how in educa-
tional designs different from the traditional ones, as
for instance those mentioned in the fourth part of the
chapter where the learning of mathematics emerges
from the realization of projects and activities in which
modeling and technology are given an essential role.

Even if researchers seem today better equipped
for approaching the relationships between learning
and practices, and sensitive to the cognitive diversity
that emerges from their diversity, benefiting today
from the different advances is not at all an easy task.
We met this difficulty when writing this chapter. For
instance, we found it essential to open the chapter
to challenging areas such as stochastics or engineer-
ing, and our initial project was to end this chapter
by some kind of integrated perspective on learning
and thinking at postsecondary level. But connecting
research in stochastics and research on AMT, two ar-
eas of research that have developed in isolated ways
and pushed by different logics, turned out to be too
difficult. Much more work than what we were able
to do within the time devoted to the elaboration of
this chapter would have been necessary in order to
succeed. What is certainly expressed in this chapter
is the specific coherence underlying each of these ap-
proaches, and the ways it tends to question the other
one, but no more.

We end this chapter with the feeling that research
on mathematical Jearning and thinking at postsecond-
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ary level is entering now a new and fascinating phase,
with difficult and new challenges to face, challenges

~ that will require to be solved to extend interactions and
. collaborations beyond the traditional commuunity of re-

search in mathematics education at advanced level.
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