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In this paper, we discuss the (potentially positive) pedagogical role of intrinsic 
limitations of computational descriptions for mathematical concepts, with special focus 
on the concept of derivative. Our claim is that, in a suitable approach, those limitations 
can act for the enrichment of learners’ concept images. We report a case study with a 
first year undergraduate student and place this in a broader empirical and theoretical 
context. 

INTRODUCTION 

Giraldo (2001) defined a theoretical-computational conflict to be any pedagogical 
situation with apparent contradiction between the mathematical theory and a 
computational representation of a given concept. We have argued that the approach to the 
concepts of derivative and limit can be properly designed to prompt a positive conversion 
of theoretical-computational conflicts to the enrichment of concept images (Giraldo & 
Carvalho, 2002a, 2002b, Giraldo, Carvalho & Tall, 2002). In addition, we distinguish 
between a description of a concept, which specifies some properties of that concept and 
the formal concept definition. Descriptions commonly employed in mathematical 
teaching include numeric, graphic and algebraic representations that individually involve 
limitations that do not fully reflect the mathematical definition. We will argue that 
suitable use of these limitations can stimulate students to engage in potentially enriching 
reasoning. 

RESEARCH FRAMEWORK 

Our theoretical position is grounded in the theory of concept image and concept definition 
(Tall and Vinner, 1981). The concept image is the total cognitive structure associated 
with a mathematical concept in an individual’s mind. It is continually being (re-
)constructed as the individual matures and may (or may not) be associated with the 
concept definition (the statement used to specify the concept). Barnard and Tall (1997) 
introduced the term cognitive unit for a chunk of the concept image on which an 
individual focuses attention at a given time. Cognitive units may be symbols, 
representations or any other aspects related to the concept. A rich concept image should 
include, not only the formal definition, but many linkages within and between cognitive 
units. 
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In a strictly formal standpoint within a formal system of rules of inference, a 
mathematical object is perfectly characterized by its definition, so that the definition 
completely exhausts the object and, in this sense, a mathematical object is its definition. 

However, the theory of concept image suggests that the teaching of a mathematical 
concept must include different approaches and representations to enable learners to build 
up multiple and flexible connections between cognitive units. The three main forms of 
representation for functions, numeric (tables), algebraic (formulae) and geometric 
(graphs), each have their own limitations. A table can have only a finite number of entries 
that does not necessarily determine the whole function, a formula may be presented in a 
way that does not mention the range or domain and a physical graph can only 
approximately present the information required for the formal function. Each of these is a 
description that lays stress on certain aspects of the concept, but also casts shadows over 
others. 

The literature reveals examples of the narrowing effect (described in Giraldo, Carvalho & 
Tall, 2002) of the students concept image as a result of focusing only on certain aspects, 
particularly computational ones. For instance, Monaghan et al (1993) reported that 
students using Derive to study calculus explained the meaning of the expression 

    
f ' x( )= lim

h→0

f x + h( )− f x( )
h

 by replacing     f (x) with a polynomial and referring to the 

sequence of key strokes to calculate the limit. Research  in Brazil (Abrahão, 1998; Belfort 
& Guimarães, 1998) reveals many instances of students accepting numeric and visual 
output of technology without query, even when software limitations produce results that 
clearly conflict with their prior knowledge. 

However, we believe that the limitations of the various descriptions need not necessarily 
lead to a narrowing of the concept image. On the contrary, such limitations have a 
potentially positive role. Sierpinska (1992), for example, affirms that the awareness of the 
limitations of each of the forms of representation, when they are all meant to represent the 
same concept, is essential for the understanding of the concept of function. We believe 
that the emphasis on theoretical-computational conflicts can lead not to a narrowing, but 
to the enrichment of learner’s concept images. 

THE CASE OF THE DERIVATIVE 

One of the most widely used descriptions for the derivative concept in elementary 
calculus courses is the following: The gradient of the function     f (x) at     x0 is the slope of 
the tangent line to the graph of f at the point ( )( )00 , xfx . However, as Vinner (1983) and 

Tall (1989) observe, the notion of tangency in students’ concept images is often strongly 
linked to geometry problems about the construction of tangent lines to circles. The 
approach to those problems focuses on global geometric relationship of the curve and the 
line, particularly, on the number of points of intersections. Thus, the idea of being 



 

 3 Printed 2/7/09 at 1:53 PM 

 

tangent—to “touch” in one single point—is featured in opposition to the idea of being 
secant—to “cut” in two points. This leads to a narrowing of the concept image of a 
tangent that is not consistent with the notion of tangent in infinitesimal calculus. 

An alternative to the traditional approach, based on the notion of local straightness, has 
been proposed by Tall (e.g. Tall, 2000). This is grounded on the fact that the graph of a 
differentiable function ‘looks straight’ when highly magnified on a computer screen. Tall 
claims that local straightness is a primitive human perception of the visual aspects of a 
graph, deeply related to the way an individual looks along the graph and apprehends the 
changes in gradient, that is suitable as a cognitive root for the concept of derivative. 

However, the notion of local straightness is also a description for the concept of 
derivative, since it comprises limitations that can trigger theoretical-computational 
conflicts. For example, floating point approximations made by computer software may 
cause unexpected results, as the one shown on figure 1. It displays the process of local 
magnification of the curve 2xy =  (in the neighborhood of (1,1)) run by software Maple. 

Until a certain stage of the process, the curve does look like a straight line, but afterwards 
(for graphic window ranges lower than 610− ) it becomes polygonal. 

 
Figure 2: A theoretical-computational conflict observed on the local magnification process. 

Theoretical-computational conflicts like this are deeply related to the fact that a finite 
algorithm is being used to describe an infinite limit process. These intrinsic limitations 
may lead to narrowed concept images, if computational descriptions are over-used. 
Nevertheless, our hypothesis is that a suitable approach, where theoretical-computational 
conflicts are not avoided, but highlighted, can prompt the positive conversion of these 
same limitations: they can make for the enrichment of concept images, by underlining 
that the notion of limit, in the sense of infinitesimal calculus, is beyond computers 
accuracy, no matter how good it is, or, more generally, any finite accuracy. 

A CASE STUDY 

The experiment reported in this section is part of a wider study, in which six first year 
undergraduate students from a Brazilian university were observed in personal interviews 
dealing with theoretical-computational conflict situations from different natures. We 
summarize the responses of one of the participants, Antônio (pseudonym) to four 
interviews, concerning the concept of derivative (translated from Portuguese). 
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Interview 1: Participants were given a few general questions concerning their 
conceptions about functions, continuity and differentiability. 

Antônio was asked how could he decide whether a function is differentiable or not, given 
the algebraic expression. He stated that a function would be differentiable if he could 
apply known formulae to evaluate derivatives. Afterwards, he was asked how he could 
decide about the differentiability if the graph of the function on a computer screen was 
given, instead of the expression. He stated that he would zoom the graph in to have a 
more careful view, but it would be impossible to be sure, as computers are not flawless. 

Interview 2: Participants were asked to gradually zoom in the graph of the function 
2xy =  around the point (1,1) using the software Maple, and simultaneously explain what 

they were observing. They would obtain screens similar to the ones shown on figure 1. 

At the beginning, Antônio declared he would see something similar to the tangent straight 
line, as he zoomed in on the graph. When the software started to display a polygonal for 
the curve, he claimed that the computer was wrong, as this was not the expected result. 
After thinking for a while, he explained the computer’s error: 

Antônio: It’s because the computer hasen’t got idea what it’s doing. It’s kind of messing 

up the points. […] As the computer sketches the graph by linking the points and 

these points are results of approximations, so it links without thinking. It links 

the points, and whatever it gets will be the graph for it, as it doesn’t know what 

goes on. 

Interview 3: Participants were asked to zoom in the 
graph of the blancmange function around a fixed 
point using the software Maple, and explain what 
they were observing. The blancmange function is 
defined in the interval [0,1] as the sum of an infinite 
series of modulus functions and is continuous but 
nowhere differentiable (figure 2). However, a finite 
truncation of the series was being used to draw the 
graph so that the function displayed was non 
differentiable at a finite set of points, rather than 
everywhere. The students were familiar with the functions and its properties, as they had 
studied it previously on calculus lessons. 

Antônio started by explaining the construction of the blancmange function. He showed 
good comprehension of the process: 

Antônio: […] You are taking a number and multiplying it by   
1
2 , taking that one and 

multiplying by   
1
2 , by   

1
2 . So, it’s a geometric progression with rate   

1
2 . […] 

Then, it’s the sum of a geometric progression. The sum of a geometric 

progression is a limit, then it converges to a point. […] Then each point there is a 

 

Figure 3: The blancmange.  
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geometric progression, it’s the limit of a convergent geometric progression. It’s 

there. So you might say the curve is a sum of sums of geometric progressions. [he 

means the union of sums]. It’s well defined.  

He then started the process of local magnification and explained that, as the curve was not 
differentiable, the graph would become more wrinkled as he zoomed in. As the algorithm 
used a finite truncation of the series, it did not looked more wrinkled, as he expected, but 
quickly acquired a straight aspect. Antônio showed great surprise, and asked the reason 
for the unexpected result. After listening to our explanation, he commented: 

Antônio: Oh, I see. You could sum a few more steps, but not until infinity. 

After thinking for a few minutes, he proceeded, with increasing excitement: 

Antônio: But it [the computer] can’t make infinity. […] Hey! I think that nothing could 

make! […] It can’t add until the infinite! There will be always an infinity 

missing. And nothing can represent the infinity, as a whole, but we can show that 

it goes to that place, that it tends to that. That’s the infinite. […] It’s impossible 

to represent it, not on the computer, not on a sheet of paper, and not in anything 

else! The computer only represents things that a human being knows. 

Interview 4: Participants were asked to investigate the differentiability of the functions: 

    
v1 x( )=

xsin(1/x), if x ≠ 0

0, if x = 0

 
 
 

   and 
    
v2 x( )= x2 sin(1/x), if x ≠ 0

0, if x = 0

 
 
 

 

For that purpose, they were given the graphs of the curves     y = xsin(1/ x)  and 

    y = x2 sin(1/x) sketched by Maple in a neighborhood of the point (0,0) (figure 3). 

Figure 3: The curves     y = xsin(1/ x)  and     y = x2 sin(1/x). 

Antônio said at first that both the functions should be differentiable, as the formulae he 
knew applied to the algebraic expression. He then started to zoom in the first graph 
around the origin, and the curve progressively looked more smudged. Antônio argued that 
again it should be due to an interpolation error, but the function v1 should have a 
derivative. Afterwards, he repeated the process for the second graph. He commented: 
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Antônio: Look, when it gets closer to 0 it kind of tends to an area. But it’s not. We can’t 

see it, but it’s the joining of two curves with […] the oscillation tends to zero, 
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Antônio to grasp not only the limitations of the computational description, but of other 
forms as well; and to figure out a conceptual distinction between finite and infinite. 

THEORY 
The curve is not differentiable, therefore it 
cannot be approximated by straight lines. 

 COMPUTATIONAL DESCRIPTION: 
The curve looks like a straight line 

when magnified 

Figure 5: The theoretical-computational conflict on interview 3. 

The theoretical-computational conflict involved in interview 4 was slightly more intricate 
than the ones observed previously, as figure 6 illustrates. In addition to that, the 
differentiability of the function could not be established by a careless use of the 
differentiation algebraic formulae, against Antônio’s former dominant criteria. However, 
the confrontation of computational and algebraic descriptions—suggesting different 
conclusions—impelled him to follow another strategy: he states that the differentiability 
of the function could only be doubtless concluded by means of the formal definition. 

THEORY 
One of the curves is differentiable 

and the other is not. 

 COMPUTATIONAL DESCRIPTION: 
Both of the curves seem 

to be differentiable 

Figure 6: The theoretical-computational conflict on interview 4. 

Antônio’s mental attitude towards conflict situations contributed to the results reported in 
this paper. The outcomes of the interviews summarized above suggest that the conflict 
have acted as positive factor for the enrichment of Antônio’s concept image of derivative 
and related notions. Nevertheless, other participants show quite different behaviors. In 
some cases, the conflicts do prompt students to engage into a rich reasoning. In others, the 
conflicts are barely noticed by students, as they are quickly solved (like Antônio did on 
interview 2). But some students very often cannot cope with theoretical-computational 
conflict situations at all. This obstacle can be due to a more general attitude towards 
technological devices, transcendent to their use as learning environments. The global 
results of the investigation in which this experiment is comprised are currently being 
analyzed. One of our aims is to understand more clearly in which situations conflicts do 
have a positive role for the enrichment of learners’ concept images, in particular, in which 
sense and in which extent learners’ previous attitudes and background determine that role. 

The main goal of this work is to put forward an alternative model of approach, not purely 
grounded on formalism nor purely on imprecise representation forms. This propose does 
not mean to undervalue of the formalism, in relation to the imprecise. On the contrary, 
through the emphasis of limitations and differences, we intend to prompt the development 
of rich concept images, as well to stress the central role of the formal conceptualization 
on the construction of a mathematical theory. 
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