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In this paper, we discuss the (potentially pos)tedagogical role of intrinsic
limitations of computational descriptions for mathegical concepts, with special focus
on the concept of derivative. Our claim is thataiguitable approach, those limitations
can act for the enrichment of learners’ conceptges We report a case study with a
first year undergraduate student and place thia liroader empirical and theoretical
context.

INTRODUCTION

Giraldo (2001) defined theoretical-computational conflido be any pedagogical
situation with apparent contradiction between tlagh@matical theory and a
computational representation of a given concepth@le argued that the approach to the
concepts of derivative and limit can be properlgigeed to prompt a positive conversion
of theoretical-computational conflicts to the ehneent of concept images (Giraldo &
Carvalho, 2002a, 2002b, Giraldo, Carvalho & TallD2). In addition, we distinguish
between alescriptionof a concept, which specifies some propertiefatf toncept and
the formal concepdefinition Descriptions commonly employed in mathematical
teaching include numeric, graphic and algebraicasgntations that individually involve
limitations that do not fully reflect the matheneaii definition. We will argue that
suitable use of these limitations can stimulatdestts to engage in potentially enriching
reasoning.

RESEARCH FRAMEWORK

Our theoretical position is grounded in the themfrgoncept image and concept definition
(Tall and Vinner, 1981). Theoncept imagés the total cognitive structure associated
with a mathematical concept in an individual’s miftds continually being (re-
)constructed as the individual matures and mayn@y not) be associated with the
concept definitiorfthe statement used to specify the concept). Baruad Tall (1997)
introduced the termognitive unitfor a chunk of the concept image on which an
individual focuses attention at a given time. Ctigaiunits may be symbols,
representations or any other aspects related tootheept. A rich concept image should
include, not only the formal definition, but mamyldages within and between cognitive
units.
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In a strictly formal standpoint within a formal $§m of rules of inference, a
mathematical object is perfectly characterizedtbylefinition, so that the definition
completely exhausts the object and, in this semsgathematical objedt its definition.

However, the theory of concept image suggestshieaieaching of a mathematical
concept must include different approaches and septations to enable learners to build
up multiple and flexible connections between cageitinits. The three main forms of
representation for functions, numeric (tables)ehtgic (formulae) and geometric
(graphs), each have their own limitations. A tatda have only a finite number of entries
that does not necessarily determine the whole ilomca formula may be presented in a
way that does not mention the range or domain grtdysical graph can only
approximately present the information requiredtha formal function. Each of these is a
descriptionthat lays stress on certain aspects of the conoaptlso casts shadows over
others.

The literature reveals examples of tte@rowing effec{described in Giraldo, Carvalho &
Tall, 2002) of the students concept image as dtrektocusing only on certain aspects,
particularly computational ones. For instance, Myhvam et al (1993) reported that
students using Derive to study calculus explailhedteaning of the expression

f(x+h)-1(x)
f' (x)— Ilm— by replacingf (x) with a polynomial and referring to the

sequence of key strokes to calculate the limiteBesh in Brazil (Abrahdo, 1998; Belfort
& Guimaraes, 1998) reveals many instances of stadmtepting numeric and visual
output of technology without query, even when safsvimitations produce results that
clearly conflict with their prior knowledge.

However, we believe that the limitations of theiwas descriptions need not necessarily
lead to a narrowing of the concept image. On theraoy, such limitations have a
potentially positive role. Sierpinska (1992), fowaenple, affirms that the awareness of the
limitations of each of the forms of representathgen they are all meant to represent the
same concept, is essential for the understanditigeatoncept of function. We believe
that the emphasis on theoretical-computationallmtsfcan lead not to a narrowing, but

to the enrichment of learner’s concept images.

THE CASE OF THE DERIVATIVE

One of the most widely used descriptions for th@vdéve concept in elementary
calculus courses is the following: The gradienthef function f (x) at x, is the slope of
the tangent line to the graphfadt the point(x,, f (x,)). However, as Vinner (1983) and

Tall (1989) observe, the notion of tangency in siid’ concept images is often strongly
linked to geometry problems about the construatibtangent lines to circles. The
approach to those problems focuses on global gemmelationship of the curve and the
line, particularly, on the number of points of irsections. Thus, the idea of being
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tangent—to “touch” in one single point—is featurepposition to the idea of being
secant—to “cut” in two points. This leads to a parnng of the concept image of a
tangent that is not consistent with the notionaoigent in infinitesimal calculus.

An alternative to the traditional approach, basedhe notion of local straightness, has
been proposed by Tall (e.g. Tall, 2000). This mugided on the fact that the graph of a
differentiable function ‘looks straight’ when highinagnified on a computer screen. Tall
claims that local straightness is a primitive hurparception of the visual aspects of a
graph, deeply related to the way an individual balong the graph and apprehends the
changes in gradient, that is suitable as a cognrowet for the concept of derivative.

However, the notion of local straightness is alsiescriptionfor the concept of
derivative, since it comprises limitations that ¢agger theoretical-computational
conflicts. For example, floating point approximasomade by computer software may
cause unexpected results, as the one shown o figuir displays the process of local
magnification of the curvey = x* (in the neighborhood of (1,1)) run by softwafaple

Until a certain stage of the process, the curves dlmek like a straight line, but afterwards
(for graphic window ranges lower tha0™°) it becomes polygonal.
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Figure 2: A theoretical-computational conflict obgs on the local magnification process.

Theoretical-computational conflicts like this amegly related to the fact that a finite
algorithm is being used to describe an infiniteifiprocess. These intrinsic limitations
may lead to narrowed concept images, if computatidascriptions are over-used.
Nevertheless, our hypothesis is that a suitableoagp, where theoretical-computational
conflicts are not avoided, but highlighted, cannppb the positive conversion of these
same limitations: they can make for the enrichnoérmbncept images, by underlining
thatthe notion of limit, in the sense of infinitesimalculus, is beyond computers
accuracy, no matter how good it is, or, more getlgrany finite accuracy.

A CASE STUDY

The experiment reported in this section is pad wfider study, in which six first year
undergraduate students from a Brazilian universdye observed in personal interviews
dealing with theoretical-computational conflictgitions from different natures. We
summarize the responses of one of the participAnt§nio (pseudonym) to four
interviews, concerning the concept of derivativar(slated from Portuguese).

3 Printed 2/7/09 at 1:53 PM



Interview 1: Participants were given a few general questions@ming their
conceptions about functions, continuity and diffeaoility.

Antdnio was asked how could he decide whether etimm is differentiable or not, given
the algebraic expression. He stated that a funetimuid be differentiable if he could
apply known formulae to evaluate derivatives. Aftards, he was asked how he could
decide about the differentiability if the graphtbé& function on a computer screen was
given, instead of the expression. He stated thatdwdd zoom the graph in to have a
more careful view, but it would be impossible todoee, as computers are not flawless.

Interview 2: Participants were asked to gradually zoom in tla@ly of the function
y = x> around the point (1,1) using the softwitaple, and simultaneously explain what

they were observing. They would obtain screenslaino the ones shown on figure 1.

At the beginning, Antbnio declared he would seeettimg similar to the tangent straight
line, as he zoomed in on the graph. When the soétatarted to display a polygonal for
the curve, he claimed that the computer was wrasghis was not the expected result.
After thinking for a while, he explained the comgxs error:

Antdnio:  It's because the computer hasen’t got ibat it's doing. It's kind of messing
up the points. [...] As the computer sketches thelytay linking the points and
these points are results of approximations, sakslwithout thinking. It links
the points, and whatever it gets will be the gragtit, as it doesn’t know what
goes on.

Interview 3: Participants were asked to zoom in the
graph of the blancmange function around a fixed
point using the softwarklaple and explain what
they were observing. The blancmange function is
defined in the interval [0,1] as the sum of anniité
series of modulus functions and is continuous but
nowhere differentiable (figure 2). However, a finit
truncation of the series was being used to draw the - #8782 g4 82" 07 6408 08
graph so that the function displayed was non
differentiable at a finite set of points, rathearh
everywhere. The students were familiar with thecfioms and its properties, as they had
studied it previously on calculus lessons.

Figure 3: The blancmange.

Antonio started by explaining the constructionted blancmange function. He showed
good comprehension of the process:

Antdnio:  [...] You are taking a number and multiplgiit by % , taking that one and
multiplying by %, by % .So, it's a geometric progression with ratg |[...]
Then, it's the sum of a geometric progression. Jima of a geometric
progression is a limit, then it converges to a pdin.] Then each point there is a
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geometric progression, it's the limit of a converggeometric progression. It's
there. So you might say the curve is a sum of safrgeometric progressions. [he
means the union of sums]. It's well defined.

He then started the process of local magnificadioth explained that, as the curve was not
differentiable, the graph would become more wridkhs he zoomed in. As the algorithm
used a finite truncation of the series, it did looked more wrinkled, as he expected, but
quickly acquired a straight aspect. Antbnio shogesht surprise, and asked the reason
for the unexpected result. After listening to oxplanation, he commented:

Antonio: Oh, | see. You could sum a few more stéps not until infinity.
After thinking for a few minutes, he proceeded hwiicreasing excitement:

Antbnio:  But it [the computer] can’t make infinitf...] Hey! | think that nothing could
make! [...] It can’'t add until the infinite! There Iivbe always an infinity
missing. And nothing can represent the infinityaashole, but we can show that
it goes to that place, that it tends to that. Thdie infinite. [...] It's impossible
to represent it, not on the computer, not on atsbiggaper, and not in anything
else! The computer only represents things thataamuibeing knows.

Interview 4: Participants were asked to investigate the diffiea®ility of the functions:

V(X):{XSin(l/x), if x#0 and v (X)z{xzsin(llx), if x20
. 0, if x=0 ’ 0, if x=0

For that purpose, they were given the graphs ottneesy = xsin(l/ x) and
y = x*sin(1/x) sketched by Maple in a neighborhood of the pd@)((figure 3).

0.014
0.0084
0.005
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-Be-054

Figure 3: The curvey = xsin(l/ x) and y = x*sin(1/x).

Antonio said at first that both the functions slibbé differentiable, as the formulae he
knew applied to the algebraic expression. He thanesl to zoom in the first graph
around the origin, and the curve progressively émbknore smudged. Antonio argued that
again it should be due to an interpolation errat,tbe functiorv; should have a

derivative. Afterwards, he repeated the procesthimsecond graph. He commented:
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Antbnio: Look, when it gets closer to O it kindtehds to an area. But it's not. We can't
see it, but it's the joining of two curves with [.tHe oscillation tends to zero,
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Antonio to grasp not only the limitations of thengoutational description, but of other
forms as well; and to figure out a conceptual degtton between finite and infinite.

THEORY COMPUTATIONAL DESCRIPTION:
The curve is not differentiable, therefore itf  The curve looks like a straight line
cannot be approximated by straight lines. when magnified

Figure 5: The theoretical-computational conflictinterview 3.

The theoretical-computational conflict involvediimerview 4 was slightly more intricate
than the ones observed previously, as figure 6tiies. In addition to that, the
differentiability of the function could not be eslished by a careless use of the
differentiation algebraic formulae, against Antésitormer dominant criteria. However,
the confrontation of computational and algebratscdptions—suggesting different
conclusions—impelled him to follow another stratelgy states thdhe differentiability

of the function could only be doubtless concludedkans of the formal definition

THEORY COMPUTATIONAL DESCRIPTION:
One of the curves is differentiable Both of the curves seem
and the other is not. to be differentiable

Figure 6: The theoretical-computational conflictinterview 4.

Antonio’s mental attitude towards conflict situatsocontributed to the results reported in
this paper. The outcomes of the interviews sumradrabove suggest that the conflict
have acted as positive factor for the enrichmemtrabnio’s concept image of derivative
and related notions. Nevertheless, other partitgpsimow quite different behaviors. In
some cases, the conflicts do prompt students tagenmpto a rich reasoning. In others, the
conflicts are barely noticed by students, as theygaickly solved (like Anténio did on
interview 2). But some students very often canogecwith theoretical-computational
conflict situations at all. This obstacle can be ttua more general attitude towards
technological devices, transcendent to their ugeaasing environments. The global
results of the investigation in which this expenris comprised are currently being
analyzed. One of our aims is to understand mowglglen which situations conflicts do
have a positive role for the enrichment of learnesacept images, in particular, in which
sense and in which extent learners’ previous dtsuand background determine that role.

The main goal of this work is to put forward areaftative model of approach, not purely
grounded on formalism nor purely on imprecise repnéation forms. This propose does
not mean to undervalue of the formalism, in relatio the imprecise. On the contrary,
through the emphasis of limitations and differengesintend to prompt the development
of rich concept images, as well to stress the akrtfe of the formal conceptualization

on the construction of a mathematical theory.
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